"بنام خدا«"

جزوه شيمى يازدهم

دبير : خانم نورى

مواد در زند گی ما نقشى شُرف و مؤثر دارند به طورى كه صنايع كوناگون مانند غذا. بوشاك. حمل و نقل. ساختمان. ار تباطات و هر بخش از زندگى ما كم و بيش تحت تأثير مواد قرار دارند .اغراق نيست اگر رشد و گسترش تمدن بشرى را دا کر گروى كشَف و شناخت مواد جد يد بدانيم .بر رسى تمدن ها از كذشته تاكنون نشان مى دهد كه توسعه جوامع انسانى به توانمندى افرادى هوشمند گره خورده است .آنان كه توانسته اند براى رفع نيازهاى خود و جامعه. موادى توليد كنند يا با دست كارى
 بردند. اما با گذشت زمان توانستند موادى مانند سفال را توليد و برخى فلزها را نيز استخراج كنند كه خواص مناسب ترى داشتند.

 مناسب ترين ماده بر ای يى كاربرد معين دست يافتند تا جايى كه مى توانند موادى نو با ويزگى هاى منحصر به فرد و دلخواه طر احى كنند .امروزه با رشد و توسعه فناورى. هزاران ماده تهيه و توليد شده كه زند گیى مدرن و بیحییده امروزى را ممكن كرده

 سنگ معدن به دست مى آيد .همحنين بر ای طعم دادن به غذاى خود. نمك به دست آمده از خشكى و در يا را روى آن آن پاشَيده ايد: سبز يجات و ميوه هايى را خورده ايد كه با استفاده از كودهاى پتاسیم. نیترورن و فسغردار رشد كرده اند .از سوى

 وسايل الكترونيكى هستند .تأمين اين نيازها به همراه توليد انواع دستگاه ها و ابزار آلات صنعتى. نظامى. كشاورزى و دارويى. سبب شده است تا تقاضاى جهانى بر ای استفاده از هداياى زمينى افزايش يا يابد. به كونه ایى كه سالانه حجم انبوهى از منابع
 هد هه شده است هر چند كه اين منابع به طور يكسان توزيع نشده اند انـ

تذكر -شكوه و عظمت تمدن امروزى تا حدود زيادى مديون مواد جديدى است كه از شيشه. پلاستيك. فلز. الياف. سر اميك و... ساخته شده اند. توجه هر چه ميزان بهره بردارى از منابع يک كشور بيشتر باشد.به شرط آن كه در زمينه هاى مختلف اقتصادى . اجتماعى و............

سؤال - با توجه با اين موضوع كه پر اكند گی منابع شيميايى در جهان يكسان نيست آيا اين پر اكندگى منابع مى تواند دليل پيدايش تجارت جهانى باشد؟ توضيح دهيد.

تا اينجا با اين مقدمه سؤالاتى به صورت زير در ذهن شما مطرح مى شود كه پاسخ به آنها موضوع اين بخش كتاب است.

 اين منابع مبتنى بر توسعةُ پايدار دارند؟ شيمى دان ها براى يافتن پاسخ این پر سش ها. در پیى كشف الكوها و روندهاى موجود در رفتار مواد و عنصر ها هستند. الكَوها و روندها در رفتار مواد و عنصرها تذكر -دانشُمندان بر جسته و بزر گ. دانشمندانى هستند كه مى توانند با بر رسى دقيق اطلاعات و يافته هاى موجود دربارة مواد و پِيده هاى گوناگون. الكَها. روندها و روابط بين آنها , ادر ک كنند و توضيح دهند .مندليف يكى از آنها است كه جدول دوره ای را طراحى كرده است.
 آنها دانست.

تذكر－جدول دوره ای عنصر ها．نمايشى بى نظير از حيدمان عنصر ها بوده و همانند يك نقشه راه براى شيمى دان هاست كه به آنها كمى مى كند حجم انبوهى از مشاهده ها را سازمان دهى و تجزيه و تحليل كنند تا الكوهاى پنمان در رفتار عنصر ها را ا آشكار نمايند．

تذكر－عنصر هاى جدول دوره ای را بر اساس رفتارشان به سه دسته فلزات ．نافلزات و شبه فلزات تقسيم بندى مى كنند．كه برخى ويزَى هاى آنها رادر زير بر رسى مى كنيم．
 خواص فيز يكى مانند رسانايى الكتر يكى و گرمايى بال ．هِكالى زياد ．درخشش فلزى ．جلا پֶيرى ．خاصيت مفتول و ورقه شدن ．شكل پذيرى و چكش خوارى（بهن شدن در اثر ضربه ）را دارند．『 در واكنش با ديگر اتم ها الكترون از دست داده وكاتيون تشكيل مى دهند． च اغلب آنها واكنش چذيرى زياد دارند．

نافلزات
『目 به جز ء كرافيت بقيه رساناى جريان برق نيستند．
■ آراق نبوده و به حالت جامد．شكننده اندهم حنين خاصيت مغتول شدن ．تورق را ندارند．
『 ه در واكنش با ديكر اتم ها الكترون به اشتر اک مى گذارند يا مى گيرند．

شبه فلزات－عناصرى كه برخى از خواص فيز يكى آن ها شبيه فلزها اما خواص شيميایى آنها شبيه نافلزهاست
 برخى خواص نافلزات را دارد．مانند سيليسيم كه درخشان و شكننده بوده از طرفى نيمه رساناست． خاص خواص فيزيكى آن ها بيشتر به فلزها شبيه بوده در حالى كه رفتار شُيميايى آنها همانند نافلزها است．

Ir	If	10	19	IV	شماره كروه0 شماره دوره
(بور) B					ros
	(سيليسيم)Si				دوه\%
	(\%)Ge	(آرسنيك) As			F0,
		(آنتى موان)Sb	(تلور) Te		د0.00
			(\%)Po	(استاتين) A (دور0

نيمه رساناها

كروهى از مواد هستند كه رسانايى الكتريكى آنها از فلز ها كمتر است و به طور كامل نارسانا نيستند.

تذكر - در گروه $1+1$ از هر سه نوع عنصر (فلزات . نافلزات و شبه فلزات) يافت مى شوند. كه به صورت زير مى باشند.

سيليسيم عنصر شكفت انكيز

كستر ش صنايع الكترونيك و ساخت انواع وسايل و دستگاه هاى الكتر ونيكى مانند تلويز يون. رايانه. تلفن همر اه و ماشين حساب مديون ويرگگ نيمه رسانايى عنصر سيليسيم است.

تذكر - خصلت فلزات تمايل به از دست دادن الكترون و خصلت نافلزات تمايل به كرفتن الكترون مى باشد. شعاع اتم ها

در شُيمى دهم آموختيد كه مطابق مدل كوانتومى. اتم را مانند كره ایى در نظر مى گيرند كه الكترون ها يپر امون هسته و در لايه هاى الكترونى در حال حر كت اند .بنابر اين مى توان برای هر اتم شعاعى در نظر كرفت و آن را اندازه كيرى كرد. بديهى است كه شعاع اتم هاى مختلف. يكسان نيست و هر چهه شعاع يك اتم بزرگ تر باشد. اندازة آن اتم نيز بزر گ تر است.

انواع شعاع اتمى

شعاع كووالانسى -نصف فاصله ميان هسته دو اتم مشابه در يك مولكول دو اتمى كه با هم پيوند كووالانسى تشكيل داده
 خواهد بود.(pm پیكومتر است و واحد طول پيوند وشعاع اتم مى باشد.

१9\% 0 m

■ شعاع واندروالسى - نصف فاصله ميان هسته دو اتم مشابه كه بين آنما يپوند شيميايى وجود ندارد و بر هم مماس اند.

نكته ا- در مورد كازهاى نجيب تنها شعاع واندروالسى وجود دارد. نكته Y-بر ای يی اتم معين . شعاع واندروالسى از شعاع كووالنسى آن بزر گ تر است.

سؤال ا-اگر شعاع واندروالسى اتم A برابر Ir.pm باشـد . باشد
الe - شعاع كووالنسى آن بر حسب بيكومتر كداميك از اعداد داده شده مى تواند باشد با ذكر دليل؟(- ایا - 11)

ب- اختلاف شعاع واندروالسى و شعاع كووالنسى آن را حساب كنيد.

سؤال

ب- شُعاع واندروالسى اتم A حند بیكومتر است.
ج- اختلاف طول بيوند كووالنسى و شعاع واندروالسى آن را محاسبه كنيد.

 الف- شعاع كووالنسى اتم A . برابر 1 است.

ب- طول بيوند كووالنانسى در آن rapm مى باشد.
ج-نسبت طول بيوند كووالنسى به شُاع واندروالسى برابر

تغييرات شعاع اتم ها

كروه- از بال به پايين با افزايش تعداد لليه هاى الكترونى سبب افزايش فاصله هسته تا الكترون هاى لUه آخر مى شود. پس شعاع اتم ها نيزَ بز, گی تر مى شود.

دور 0 - دردوره تعداد لليه هاى الكترونى ثابت است و از چب به راست با افزايش عدد اتمى . نيروى جاذبه هسته بر روى الكترون هاى لايه ظرفيت بيش تر شده . شعاع اتم ها كاهش مى يابد.

واكنش چذيرى شیميایی - به تمايل هر ماده براى انجام واكنش شيميايى . واكنش چذيرى شيميايى آن ماده مى گويند.

ارتباط ميان شعاع اته ها و واكنش پذيرى آن ها

مبناى واكنش پذيرى در فلزات تمايل آن ها بها از دست دادن الكترون است در حالى كه مبناى واكنش پذيرى در نافلزات تمايل آن ها به كرفتن الكترون مى باشد كروه- در گروه از بالل به ايايين با افزايش شعاع اتم ها خصلت فلزى افزايش و خصلت نافلزى كاهش مى يابد. دوره- در دوره از چپ به راست با كاهش شعاع اتم ها . خصلت فلزى كاهش و خصلت نافلزى افزايش مى يابد. نكته- هر حه شُعاع اتمى يك فلز بزر گ تر باشد. آسان تر الكترون از دست مى دهد پس واكنش پذير ى(فعاليت شيميايى) آن بيش تر
 مى باشد.

قانون دور ه ای عنصر ها

با افزايش عدداتمى خصلت فلزى در دروه ها كاهش و در گروه ها اين ويزَ گى افزايش مى يابد .به عبارتى خواص فيزيكى و شیميايى عنصر ها به صورت دوره ای تكرار مى شود . كه به آن قانون دوره ای عنصر ها مى گويند.

مثال| - در گروه جهارده اولين عنصر يعنى كربن .نافلز در حالى كه دوعنصر آخر يعنى قلع و سرب كاملاً فلزند. مثال Y

الف - شعاع اتمى كدام يک بيش تر است؟ جر ا؟

ب-كداميك جهت پايدار شدن كاتيون تشكيل مى دهد؟

ج-تعداد لايه هاى الكترونى كداميك كم تر است؟ د- مجموع عدد كوانتومى اصلى و فرعى آخرين زير لايه را براى هر كدام بنويسيد.

ه-در هر اتم چند الكترون با عدد كوانتومى ا=I دارند؟

و - فر مول شيميايى تر كيب حاصل از اين دو را بنويسيد. سؤال rا-بر اساس جدول زير كه مربوط به عناصر يک گروه است به سؤالات پاسخ دهيد.

اتم فرضى	A	B	C	D
شعاع كووالانسى اتم (pm)	9.	V.	0 .	ros

الف-عنصر D مى تواند كاز نجيب هليم باشد. ب- عدد اتمى عنصر A نسبت به بقيه كوحِك تر است.

ج- تعداد لايه هاى الكترونى عنصر A از بقيه بيش تر است.

د-اكر فرض كنيم این عناصر نافلز باشند واكنش پذيرى عنصر A از همه آنها بيش تر است.

 الف - شعاع كووالنسى اتم D , ا محاسبه كنيد.

ج-اگر عدد اتمى عنصر A ا; بزرگ تر باشد . در اين صورت اين دو عنصر مى توانند در يى گروه جدول دوره ای باشند؟
 زير در باره آن ها درست و كدام نادرست است .توضيح دهيد. الف - خصلت فلزى X X ا بيش تر است.

ب-تعداد لايه هاى الكترونى X Y Y بيش تر است.

> ج- نير وى جاذبه هسته اتم Y از اتم X كم تر است.
د-شعاع اتمى X از شعاع اتمى Y بز, گ تر است.

سؤال צ-اگ, دو عنصر B A A A يكى دوره از جدول دوره ای عنصر ها باشند .و عدد اتمى عنصر B كوچكى تر باشد . كدام عبارت زير درست و كدام نادرست است؟ الف - شعاع اتمى عنصر A بزر B تر تر است. ب- خصلت فلزى عنصر B بيش تر است. ج-تعداد لليه هاى الكترونى عنصر A مهم تر است. د- نير وى جاذبه هسته در اتم B نسبت به اتم A لم لم لم تر است. سؤال Y-اگر دو عنصر C C D در يی دوره از جدول دوره ای قر ار داشته باشند. وجهت هايدار شدن اتم C كاتيون و اتمD آنيون تشكيل دهد. براساس توضيح داده شده مورد درست را انتخاب كنيد. الف-شعاع اتمى بزر گی ترى دارد. ب- خصلت فلزى اتم آن . كم تر است. ج- شعاع اتمى آن از شعاع يونى آن بز آر گ تر تر است. د-نيروى جاذبه هسته در آن كم تر است.

بر رسى بر خى كروه هاى جدول دوره ای عنصر ها

$\begin{array}{\|c\|} \hline \mathrm{Li} \\ \mathrm{r} \\ \hline \end{array}$	
	$\begin{aligned} & \mathrm{Na} \\ & \\ & 11 \\ & \hline \end{aligned}$
	$\underset{19}{\mathrm{~K}}$
	$\underset{r v}{\mathrm{Rb}}$
	Cs

ل تَام آن هابا آب به راحتى واكنش مى دهند.و با افزايش عدد اتمى آن ها شدت واكنش پذيرى نيز بيش تر مى شود
 Ø \downarrow با از دست دادن تى الكترون لايه آخر خود به آرايش گاز نجيب يكى دوره قبل مى رسند.

V الحطح اين فلزات براق است .ولى به دلِل واكنش پذيرى بالا در اثر تماس با هوا .اكسيد شده و تيره مى شوند به همين علت آن ها را در زيرنفت نكهدارى مى كنند.『 ابا افزايش عدد اتمى آن ها (از بالل به هايين) واكنش پذيرى آن ها نيز افزايش مى يابد . زيرا تمايل فلزات به از دست دادن الكترون (واكنش پذيرى)با بز, گ تر شدن اندازه اتم (شعاع اتمى) . افزايش مى يابد.

 باشند.
 ها فعالتر ين گروه نافلزات مى باشند . (حون تا كاز نجيب بعدى فقط يك الكترون كم دارند). با گرفتن يكى الكترون به آرايش پايدار گاز نجيب بعد از خود رسيده و يون منفى حاصل را هاليد مى گويند.

$$
\mathrm{X}+\mathrm{le} \rightarrow \mathrm{X}^{\prime}
$$

$\xrightarrow{\text { 地 }} \mathrm{Cl}+1 \mathrm{e} \rightarrow \mathrm{Cl}^{-}$ بيون كلريد اتم

حاصل واكنش آنها با هر فلزى به ويثّه فلزات گروه اول يك نمک است .پس به آنها هالورْن يا نمك ساز مى گويند $\mathrm{rNa}(\mathrm{s})+\mathrm{Cl}_{\mathrm{r}}(\mathrm{g}) \rightarrow \mathrm{rNaCl}(\mathrm{s})$

V در توليد للمپ حراغ هاى جلوى خودروها. از هالورن ها استفاده مى شود. لَ واكنش پذيرى آنها از بالل به پايين كم مى شود .به عنوان نمونه واكنش آنها باكاز هيدرورّن به صورت زير است.

	10
تّ و, و	فوزور
	6
	P.
	*

 فلوئور به رنگ زرد . كلر زرد مايل به سبز . برم قرمز و يد بنفسَ رنگ است.

سؤال ا-عبارت درست و عبارت نادرست را مشخص كرده وشكل درست عبارت نادرست را بنويسيد. الف-با افزايش عدداتمى عنصر ها در يک گروه از خصلت فلزى آنها كاسته مى شود. ب- فرانسيم فعال ترين عنصر فلزى است. ج- در فلزات از بالا به هايين تمايل به از دست دادن الكترون افزايش مى يابد.
 الف - كدام عنصر يك فلز قليايى خاكى است؟

d دنيايى رنكى با عنصر هاى دسته

يكى از اصيل تر ين و ارزنده ترين صنايع دستى كشورمان شيشه گرى است. صنعتى كه پشتوانه و سابقه ایى دير ينه دارد .كردن بندى با
 كه طى كاوش هاى باستان شناسى در لر ستان و شوش به دست آمده است. نشان از وجود اين صنعت در روز كاران بسيار دور دارد .

 جواهر سازى دارند.

فلزاتى سخت ودير ذوب بوده (به جزء جيوه)و رساناى جريان برق و گرما مى باشند.
 مى باشند.

لص در وسط جدول قر ار داشته وجزء دسته d مى باشند.يعنى زير للاهه d آنها در حال الكترون گيرى است.

شوند.

『ا اغلب كاتيون هاى آنها رنگى اند پس تر كيب هاى آنها .نيز رنگى مى باشد.

نماد كاتيون	$\mathrm{Cu}^{\text {r+ }}$	Cor ${ }^{\text {r }}$	Fe	$\mathrm{Cr}^{\text {r }}$	Ni"	111	$\mathbf{Z n}^{\text {r+ }}$
, رنى كاتيون	آبى		سبز				بی

اله اغب اين فلزها در طبيعت به شكل تر كيب هاى يونى همحون اكسيد ها ．كربنات ها و．．．وجود داشته باشند مثلاً آهن دو

وجود دارد．

 نشر مى كنند و رنگ بسيار زيبايى به وجود مى آورند．

تذكر ا－اگر چهه فلز هاى واسطه هنگام تشكيل يون به آرايش كَاز نجيب نمى رسند．اما واكنش پذيرى زياد آنيا سبب شده． تر كيب هاى كوناكونى از اين فلز ها در طبيعت وجود داشته باشد．
 سرخ زيباى ياقوت را ايجاد كرده است．با عبور نور سفيد از يكى ياقوت．طول موج هاى بلندتر آن يعنى رنى سرخ بازتاب مى شود．

اسكانديم（riSc）

『『 اولين عنصر واسطه جدول دوره ای است．

تيتانيم（ryTi）

『 \downarrow『 الز『 ا كاربر دهاى زيادى دارد به عنوان مثال از آن در بدنه دوحر خهـ ．واز آليارً آن با آلومينيم در ايستگاه هاى فضايى بين المللى استفاده مى كنند．

『 جزء عنصر هاى واسطه دوره ششم جدول دوره ای است.

دقت كنيد - براى استخر اج مقدار كمى ازطل بايد از حجم انبوهى خاكى معدن استفاده كرد .به همين دليل پسماند بسيار زيادى توليد

بر خى كار بر د هاى طل

سالانه در حدود . . . \ddagger تن طلا در جهان استخر اج و توليد مى شود. كه يرخى از كاربر دهاى آن درجدول زير آمده است.

صنايع ديكر	بشتوانه ارزى	دندان بزشكى	الكترونيك	زيور آلات و جواهرات	كار برد
vo	ror r	$\Delta r r$	+1.4	rras r	مقدار بر حسب

عنصر ها به چه شكلى در طبيعت يافت مى شوند؟

『 اغلب عنصر ها(فلزات و نافلزات) در طبيعت به شكل تر كيب يافت مى شوند.
『 اغلب فلزات به شكل تر كيب هايى مانند اكسيد يا سولفيد وجود دارند .
فلزاتى همحون نقره . مس . .لاتِن به صورت آزاد وجود دارند.
لافلز اتى همحون اكسيرْن . نيترورزن . كوكرد . فسفر . كربن و...... به شكل آزاد يافت مى شوند.

نكتها - در ميان فلزها، تنها طلا به شكل كلوخه ها يا ر گه هاى زرد لابه للى خاك يافت مى شود. نكته Y - در دنياى مدرن و صنعتى امروزى. از فلزهاى بسيار زيادى استفاده مى شود آن حنان كه حرخ هاى اقتصادى كشورها به توليد و مصرف اين مواد كره خورده است آهن فلزى است كه در سطح جهان بيشترين مصرف سالانه ,ا در بين صنايع گوناكون دارد.

مى دانيم واكنش پذيرى فلز. تمايل آن فلز را براى انجام واكنش شيميايى نشَان مى دهد .هر حه فلز واكنش پذير تر باشد. تمايل آن براى انجام واكنش بيشتر است.
 بيشتر باشد. در شر ايط يكسان تمايل آن براى تبديل شدن به تر كيب بيشتر است .هر حه فلز فعال تر باشد. ميل بيشترى به ايجاد تر كيب دارد و تر كيب هايش پايدارتر از خودش است .به ديگر سخن هر چه واكنش پذ يرى فلزى بيشتر باشد. استخر اج آن فلز دشوار تر است. به طور كلى هر واكنش شيميایی كه به طور طبيعى انجام مى شود.واكنس پذيرى فراورده ها از واكنش دهنده ها كمتر است.
سؤال ا-به نظر شما استخراج كدام فلز (آهن . تِاسیم) از سنگَ معدن آن دشوار تر است ؟ حر ا؟؟

سؤال - - الـ توجه به موقعيت فرضى عنصرهاى فلزى B A طبق جدول روبرو مشخص كنيد كدام واكنش در جهت نوشته
شده انجام مى كيرد ؟یر ا؟

$$
\text { الف - A. } \mathrm{O}+\mathrm{B} \rightarrow \mathrm{~A}+\mathrm{B} \cdot \mathrm{C}
$$

$$
\mathrm{B}, \mathrm{O}+\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{A}, \mathrm{O}-ب
$$

سؤال عنصر هاى مشخص شده را با هم مقايسه كنيد.
$\mathrm{Fe}+\mathrm{CuCl} \rightarrow \mathrm{FeCl}+\mathrm{Cu}$
$\mathrm{Mg}+\mathrm{FeCl} \rightarrow \mathrm{MgCl}+\mathrm{Fe}$
ب- فلز Mg با فلز

ج- به نظر شما واكنش پذيرى منيز يم و آهن كدام يك بيش تر است ؟ چگُونه به اين موضوع پى برديد.

مجتمع هاى صنتتى در استخراج فلزات

فلزها از جمله هداياى زمينى هستند كه اغلب در طبيعت به شكل سنگ معدن يافت مى شوند .در كشور ما فولاد مبار كه. مس سر حشمه. آلومينيم اراك و منيز يم خر اسان از جمله مجتمع هاى صنعتى هستند كه براى استخراج فلزها بنا شده اند

الص
 V از آنجا كه دستر سى به كربن آسان تر و صرفه اقتصادى بيشترى دارد. شر كت هاى فولاد جهان. براى استخراج آهن از كربن استفاده مى شود.

V

در صنعت و آزمايشُاه اغلب واكنش دهنده ها . ناخالص اند . به بيان ديگُر افزون بر ماده شيميايى مورد نظر برخى تر كيب هاى ديگر نيز در آن يافت مى شود . شُيميدان ها برى بيان ميزان خالص بودن يك ماده از در صد خلوص استفاده مى كنند. با استفاده از رابطه

نكتها - از آنجا كه اغلب مواد داراى ناخالصى مى باشند پس در حين كار در آزمايشكاه و صنعت بر ای تأمين مقدار معينى از يك مادة

خالص. همواره بايد مقدار بيشترى ازمادة ناخالص را به كار برد.به عنوان مثال اگر . . بكرم نمى طعام خالص نياز داشته باشيم بايد
 نكته Y- ناخالصى ها در واكنش اصلى تاثير نمى گذارند. مثال| - در . . . گرم كانه هاليت . مقدار ه كرم ناخالصى دارد ـ درصد خلوص اين ماده حند است؟

$$
\text { . }=\frac{190}{r \ldots} \times 1 \cdots=\% .9 \mathrm{~V} / 0
$$

در اين كونه مسائل سه حالت ممكن است كد به بررسى نك نك آن ها میى بر دازيم•.
حالت اول - در صد خلوص مربوط به داده سؤال باشد .در اين صورت بايدعبارت ...1 $\frac{P}{1}$ اولين كسر استوكيومترى وارد كنيم. (درصد خلوص است P) مثال- با گرم .r آهن ناخالص با خلوص^9درصد بر اساس معادله واكنش زير : (ناخالصى ها در واكنش تاثير ندارند.) $\mathrm{Fe}=\Delta \varepsilon: \mathrm{g} . \mathrm{mol}^{-}$

$$
\mathrm{Fe}+\mathrm{r} \mathrm{HCl} \rightarrow \mathrm{FeCl}_{r}+\mathrm{H}_{r}
$$

الف - حند ليتر كاز هيدرورن در شر ايط استاندارد توليد مى شود؟
 ناخالص
بـ بـ جند مول هيدرو كلر يكى اسيد مصرف مى شود؟
 ناخالص

حالت دوم - در صد خلوص مربوط به سؤال خواستهباشد .در اين صورت بايدعبارت
 Fe= A در واكش شر كت نمى كند.)

$$
\mu \mathrm{CO}(\mathrm{~g})+\mathrm{Fe}_{\varphi} \mathrm{O}_{r}(\mathrm{~s}) \rightarrow \mu \mathrm{CO}_{r}(\mathrm{~g})+\mu \mathrm{Fe}(\mathrm{l})
$$

$\mathrm{Fe}_{r} \mathrm{O}_{r}=r \Delta \cdot \mathrm{gFe} \times \frac{1 \mathrm{molFe}}{\Delta s \mathrm{gFe}} \times \frac{1 \mathrm{molFe}_{r} \mathrm{O}_{r}}{r \mathrm{molFe}^{2}} \times \frac{1 \varepsilon \cdot \mathrm{gFe}_{r} \mathrm{O}_{r}}{1 \mathrm{molFe}_{r} \mathrm{O}_{r}} \times \frac{1 \cdot \mathrm{gFe}_{r} \mathrm{O}_{r}}{\wedge \Delta \mathrm{gFe}_{r} \mathrm{O}_{r}}=\Delta \wedge \wedge / r \mathrm{mgFe}_{r} \mathrm{O}_{r}$ حالت سوم- درصد خلوص ماده، مجهول باشد.براى حل اين كونه مسائل چند روش وجود دارد كه به آنها مى پردازيم. روش ا- مقدار ماده خالصى كه بايد در واكنش شركت كرده را از روابط استوكيومترى محاسبه كرده سیس به كمى رابطه درصد خلوص . اقدام مى كنيم.
 $\mathrm{Ca}=r \cdot, \mathrm{C}=1 \mathrm{r}, \mathrm{O}=14: \mathrm{g} \cdot \mathrm{mol}^{-1}$ (كردد. درصد خلوص سنگ آهك را حساب كنيد راه حل: مى دانِيم ناخالص ها در واكنش شر كت نمى كنند سِ مقدار سنگ آهك خالص كه مورد نياز است را محاسبه مى كنيم. $? \mathrm{gCaCO}_{r}=\mu r / \wedge \mathrm{LCO}_{r} \times \frac{1 \mathrm{molCO}_{r}}{r r / r \mathrm{LCO}_{r}} \times \frac{1 \mathrm{molCaCO}_{r}}{1 \mathrm{molCO}_{r}} \times \frac{1 \cdot \mathrm{gCaCO}_{r}}{1 \mathrm{molCaCO}_{r}}=r \cdot . \mathrm{gCaCO}_{r}$

روش Y- درصد خلوص ماده را به عنوان مجهول در رابطه استو كيومترى وارد مى كنيم.و مقدار آن را محاسبه مى كنسم. $\uparrow \cdot g \mathrm{gCaCO}_{r}=\mu r / \wedge \mathrm{LCO}_{r} \times \frac{1 \mathrm{molCO}_{r}}{r_{r} / \uparrow \mathrm{LCO}_{r}} \times \frac{1 \mathrm{molCaCO}_{r}}{1 \mathrm{molCO}_{r}} \times \frac{1 \cdot \mathrm{gCaCO}_{r}}{1 \mathrm{molCaCO}_{r}} \times \frac{1 \cdot \mathrm{gCaCO}_{r}}{\mathrm{pgCaCO}}$

 كند. درصد خلوص سديم هيدروكسيد را حساب كنيد.(ناخالصى ها در واكنش شر كت نمى كنند) .
$\mathrm{Na}=r \cdot, \mathrm{~S}=r \mathrm{r}, \mathrm{H}=1, \mathrm{O}=1 \varepsilon: \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
r \mathrm{NaOH}+\mathrm{H}_{r} \mathrm{SO}_{\uparrow} \rightarrow \mathrm{Na}_{\uparrow} \mathrm{SO}_{\uparrow}+r \mathrm{H}_{r} \mathrm{O}
$$

روش اول : حون در صد خلوص سديم هيدرو كسيد را خواسته مقدارخالص مورد نياز آن را به عنوان مجهول محاسبه مى كنبم

> يعنى بر ای اين مقدار سولغوريك اسيد به . . ث گرم سديم هيدرو كسيد خالص نياز داريم.

$$
\begin{aligned}
& 4 q \cdot=\frac{4 q \cdot \times r \times 4 \cdot \times 1 \cdots}{q \wedge \times p} \rightarrow p=\frac{4 q \cdot \times r \times 4 \cdot \times 1 \cdots}{q \wedge \times 4 \xi .}=1 \varepsilon / 90
\end{aligned}
$$

حالا نوبت شماست

سؤال ا-بر اساس معادله واكنش زير اگر Yه/^ه كرم آمونياك ناخالص با خلوص ($\mathrm{N}=1 f, \mathrm{H}=1: \mathrm{g} . \mathrm{mol}^{-1}$) (ناخالصى ها در واكنش شر كت نمى كنند.)

$$
r \mathrm{NH}_{r}(\mathrm{~g}) \rightarrow \mathrm{N}_{r}(\mathrm{~g})+\mathrm{r}_{r}(\mathrm{~g})
$$

الف - چند ليتر كاز نيتروزن به دست مى آيد.(حجم مولى گاز ها رادر شر ايط آزمايش . باليتر برمول فرض كنيد.)
ب- حند مولكول هيدروزن توليد خواهد شد؟

سؤال r-

$$
\mathrm{Mg}+\uparrow \mathrm{HCl} \rightarrow \mathrm{MgCl}_{r}+\mathrm{H}_{r}
$$

سؤال توليد شود. درصد خلوص سديم آزيدرامحاسبه كنيد. (Na=Yr, N=1f : g.mol
$r \mathrm{NaN}_{-}(\mathrm{s}) \rightarrow \mathrm{rNa}(\mathrm{s})+\mathrm{rN}_{(}(\mathrm{g})$
 شر ايط استاندارد مقدار 190 1/1 ليتر گاز كلر به دست آيد . درصد خلوص منكنز دى اكسيد را حساب كنيد. (ناخالصى ها در واكنش شر كت نمى كنند)

$$
\mathrm{MnO}+\uparrow+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{\uparrow}+\mathrm{Cl}_{\psi}+\uparrow \mathrm{H}_{\uparrow} \mathrm{O}
$$

$$
1 \mathrm{~mol} \mathrm{MnO}_{r}=\lambda \vee \mathrm{g}
$$

$\mathrm{KKClO}_{\mathrm{r}} \rightarrow \mathrm{rKCl}+\mathrm{rO}_{\mathrm{r}}$

بازده درصدى واكنش

واكنش هاى شيميایى هميشه بر اساس پیش بينى ما پیش نمى روند. زيرا ممكن است واكنش دهنده ها ناخالص باشند. واكنش به طور

 شود . كم تر باشد.به بيان ديكر مقدار نظرى واكنُّ. مقدار فر اورده ای است كه با مصرف كامل يك يا تمام واكنش دهنده ها توليدمى شود و در واقع بيشّ ترين مقدار فراورده قابل انتظار از يك واكنش موازنه شده مى باشد. مقدار نظرى را مى توان با محاسبات استوكيومترى به دست آورد . در شيمى . اختلاف ميان مقدار نظرى و مقدارعملى . با محاسبه بازده درصدى بيان مى شود. مقدار نظرى -مقدار فر اورده ای كه با محاسبات استوكيومترى انتظار آن را داريم. مقدار عملى- مقدار فراورده ای كه در عمل توليد مى گردد. بازده درصدى- نسبت مقدار عملى فراوردة يك واكنش به مقدار نظرى آن است كه به صورت درصد بيان مى شود.

$$
\text { مقدارنظرى عقدار عملى }=\frac{\text { بازده درصدى واكنش } 1 . .}{} \times
$$

『 ∇ V『 در اغلب موارد مقدار عملى از مقدار نظرى كم تر است . پس در اغلب موارد بازده از . . ا كم تر خواهد شد.
.
 $\mathrm{Zn}+\mathrm{Cl}_{\mathrm{r}} \rightarrow \mathrm{ZnCl}_{\mathrm{r}}$ $\left(\mathrm{Zn}=\boldsymbol{=} \Delta \cdot \mathrm{Cl}=\mu \Delta / \Delta: \mathbf{g} \cdot \mathrm{mol}^{-1}\right)$

$\left\lceil\mathrm{KClO}_{r} \xrightarrow{\mathrm{MnO}_{r}} \Psi \mathrm{KCl}+\mu \mathrm{O}_{r}\right.$
? $\mathrm{LOr}=9 \wedge \mathrm{gKClOr} \times \frac{1 \mathrm{molKClO}_{r}}{1 r r / \Delta \mathrm{KKClO}_{r}} \times \frac{r \mathrm{molO}_{r}}{r \mathrm{molKClO}_{r}} \times \frac{r r / \uparrow \mathrm{LO}_{r}}{1 \mathrm{molO}_{r}}=r s / \wedge \wedge \mathrm{LO}_{r}$

$$
\mathrm{C}_{r} \mathrm{H}_{\Delta} \mathrm{OH}+\mu \mathrm{O}_{r} \rightarrow r \mathrm{CO}_{r}+\mu \mathrm{H}_{r} \mathrm{O}
$$

$$
? \mathrm{gCOr}=9 / \mathrm{rgC}, \mathrm{H}_{2} \mathrm{OH} \times \frac{1 \mathrm{molC}, \mathrm{H}_{2} \mathrm{OH}}{4 q \mathrm{gC}, \mathrm{H}_{2} \mathrm{OH}} \times \frac{\mathrm{rmolCO}}{1 \mathrm{molC}, \mathrm{H}_{2} \mathrm{OH}} \times \frac{4 \mathrm{fgCO}_{2}}{\mathrm{molCO}}=1 \mathrm{~V} / 4 \mathrm{gCO}
$$

$$
\begin{aligned}
& \mathrm{Zn}+\mathrm{Cl}, \rightarrow \mathrm{ZnCl}, \\
& ? \mathrm{gZnCl}=1 r \mathrm{gZn} \times \frac{1 \mathrm{molZn}}{4 \Delta \mathrm{gZn}} \times \frac{1 \mathrm{molZnCl}_{r}}{1 \mathrm{molZn}} \times \frac{1 r s \mathrm{gZnCl}_{r}}{1 \mathrm{molZnCl}_{r}}=r v / r \mathrm{gZnCl}_{r}
\end{aligned}
$$

 تهيه مى شود. بازده درصدى واكنش را حساب كنيد. (Cu= ${ }^{\text {(}}$.

$\mathrm{CuS}+\mathrm{O}_{\mathrm{r}} \rightarrow \mathrm{Cu}+\mathrm{SO}_{r}$

$\mu \mathrm{CO}(\mathrm{g})+\mathrm{Fe}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}(\mathrm{s}) \rightarrow \mathrm{r}^{\mu} \mathrm{CO}_{r}(\mathrm{~g})+\mathrm{rFe}^{(\mathrm{l})}$

سؤال چگالى זگَرم بر ليتر توليد شده باشد بازده درصدى اين واكنش را محاسبه كنيد. (نا خالص ها . در واكنش شركت نمى كنند.) $\left(\mathbf{O}=1 \varsigma \cdot \mathbf{C}=1 ヶ . \mathrm{Fe}=\Delta \varsigma: \mathbf{g} \cdot \mathrm{mol}^{-1}\right)$

$$
\mu \mathrm{CO}(\mathrm{~g})+\mathrm{Fe}_{r} \mathrm{O}_{r}(\mathrm{~s}) \rightarrow \mu \mathrm{CO}_{r}(\mathrm{~g})+\mu \mathrm{Fe}(\mathrm{l})
$$

سؤال F از از واكنش F درصدى اين واكنش را حساب كنيد.
$1 \mathrm{~mol} \mathrm{AgNO}=149 / \wedge r \mathrm{~g}, \quad 1 \mathrm{~mol} \mathrm{AgI}=r \mu \mu / V 4 \mathrm{~g}$
$r \mathrm{AgNOr}(\mathrm{aq})+\mathrm{Pbl}(\mathrm{aq}) \longrightarrow \mathrm{Agl}(\mathrm{s})+\mathrm{Pb}(\mathrm{NOr}) \mathrm{Haq}_{(\mathrm{aq})}$

در مورد واكنش ترميت چه مى دانيم

『 واكنشى ميان فلز آلومينيم و آهن (III) اكسيد كه بسيار كرماده مى باشد.را واكنش ترميت مى نامند.

$$
r \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{+} \mathrm{O}_{r}(\mathrm{~s}) \rightarrow \mathrm{Al}_{+} \mathrm{O}_{+}(\mathrm{s})+r \mathrm{Fe}(\mathrm{l})+\mathrm{Q}
$$

ص اواكنش از نوع جابه حايى يكانه است.
च از آهن مذاب توليد شده در آن براى جوشكارى خطوط راه آهن استفاده مى كنند.
V از آهن(III) اكسيد به عنوان رنگ قرمز در نقاشى استفاده مى شود.

استخراج فلز با استفاده از كياهان

يكى از روش هاى بيرون كشيدن فلز از لابه لاى خاك. استفاده از كياهان است .در اين روش در معدن يا خاك داراى فلز. كياهانى مى كارند كه مى توانند آن فلز را جذب كنند. سِس كياه را برداشت مى كنند. مى سوزانند و از خاكستر حاصل. فلز را جداسازى مى كنند.

كياه پֶالاییی

 رِر ششت و قدرت جذب بالل به همر اه باكترى هاى موجود در ريشَة كِاهان به آنما اجازه مى دهد تا آللاينده هاى موجود در آب راجذب .تغليظ يا تجز يه كنند .بديمى است يافتن كِياه مناسب براى یالايش هر آلاينده يكى از دشوارتر ين و هـمر ترين مر احل اين فرايند است .

چه كياهانى پالاينده هستند؟

كنج هاى اعماق دريا

 كبالت. آهن. نيكل. مس و ... يافت مى شود. غلظت بيشتر كونه هاى فلزى موجود در كف اقيانوس نسبت به ذخاير زمينى. بهره بردارى از اين منابع را نويد مى دهد.

نفت، هديه ای شكفت انكيز
 كشيده مى شود.

ا
 و, و....اشاره كرد.

 r- مادة اوليه براى تهيةٔ بسيارى از مواد و كالهايى ماند داري دو ها ها . عطر ها ـ مواد آرايشى و......... مى باشد.

بر خى موارد استفاده نفت خام

 منفجر و و لاستيك به كار مى رود.

تذكر - هر بشكه نفت خام هم ارز 109 ليتر است .و روزانه بيش از . 1 ميليون بشكه نفت خام در دنيا به شكل هاى گوناگون مصرف

كربن، اساس استخوان بندى هيدروكربن ها

 ץ- اين اتم رفتارهاى منحصر به فردى دارد كه آن را از اتم ديگر عنصر هاى جدول متمايز مى سازد .به طورى كه تر كيب هاى شناخته شُه از اتم كربن. از مجموع تر كيب هاى شناخته شده از ديگر عنصر هاى جدول دوره ایى بيشتر است.

علت رفتار هاى هاى منحصر به فرد عنصر كربن و تنوع تر كيب هاى آن چیست؟

 توليد كنند.

Y- اتم كر بن مى تواند با اتم عنصر هاى هيدرورْن. اكسيرْن. نيترورْن. گوگرد و فسفر و هالورن ها به شيوه هاى گوناگون متصل شده و مولكول شمار زيادى از مواد مانند كربوهيدرات ها. حربى ها. آمينو اسيدها. آنزيم ها. بروتيّين ها و ...را بسازد.

$\mathrm{CH}_{r} \mathrm{CH}_{r} \mathrm{CH}_{r} \mathrm{CH}_{r}$
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
$\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H}$
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

$\mathrm{CH}_{-} \mathrm{CH}_{+} \mathrm{CH}_{+} \mathrm{CH}_{+} \mathrm{CH}_{+} \mathrm{CH}_{+} \mathrm{CH}_{4} \mathrm{CH}_{+} \mathrm{CH}_{+} \mathrm{CH}_{r}$

نكته - كربن حون در ساختار در تمام زيست مولكول ها كه اساس هستى را پایه ريزى كرده اند و ادامهٔ زندگى را ممكن ساخته اند. يافت مى شود به آن عنصر جهان زنده و سيليسيم كه در ساختار سنگ ها وخا وخاك يافت مى شود . عنصر جهان غير زنده مى گويند.

هيدروكربن - تر كيب هايى كه از دو عنصر كربن و هيدرورن درست شده باشند.

انواع هيدروكربن ها

ا-هيدروكربن هاى زنجيرى كه خود بر دو دسته هستند
■
Vا سير نشده كه شامل آلكن ها و آلكين ها مى باشد.
Y- Yص
آ
آلكان ها-هيدرو كربن هاى زنجيرى هستند كه در آن ها هر اتم كربن با جپار پيوند يگانه به اتم هاى مجاور متصل است به عبارتى

بر خى ويرّكى هاى آلكان ها

(ابر افین هايا كم اثر ها) مى كويند.

و بدن تأثير حندانى نداشته باشد و تنها سبب كاهش مقدار اكسيرن در هواى دم مى شوند. V آلكان های سبك تا

تو جه－هيج كاه براى برداشتن بنز ين از باك خودرو يا بشكه از مكيدن شيلنگ استفاده نكنيد．زيرا بخارهاى بنزين وارد شش ها شده و از انتقال كازهاى تنفسى در شش ها جلو يرى مى كند و نغس كشيدن دشوار مى شود．اگر ميزان بخارهاى وارد شده به شش ها زياد باشد．ممكن است سبب مر گ فرد شود ．بنابر اين هنگام كار كردن با اين مواد بايد نكات ايمنى را جدى بگير يد و رعايت كنيد．

> ا-كران روى :مقاومت در برابر جارى شدن را گُرانروى مى گويند.「-فرأر بودن :تمايل براى تبديل به حالت كاز مى باشد.

「－وازلين نامى تجارى است كه به مخلوطى از هيدرو كر بن هاى سنگين تر داده شده است ．اين هيدروكربن ها اغلب به عنوان نر م كننده و محافظ بدن استفاده مى شوند ．اين مخلوط وي夫گى روان كنندگى نيز دارد و در تهيه بيشتر مر طوب كننده ها．يمادها و مواد آرايشى به كار مى رود．

سؤال－بر اساس توضيح داده شده هيدرو كربن مورد نظر را انتخاب كنيد．（ همه هيدروكربن ها را راست زنجير فرض كنيد．） （C．H ．．C，H．Hrr）．
r－（Cr r－（ C．${ }^{\text {r }}$
 ه－فرّارتر است．（C．${ }^{\text {（ }}$

تذكر－آلكان ها را به دو دسته راست زنجير و شاخه دار تقسيم بندى مى كنند．در آلكان راست زنجير هر اتم كربن به يك يا دو اتم كربن ديگر متصل است．در حالى كه در آلكان شاخه دار．برخى كربن ها به سه يا حهار اتم كربن ديگر متصل اند．

CH

$\mathrm{CH}_{r} \quad \mathrm{C} \quad \mathrm{CH}_{r} \quad \mathrm{CH}_{r}$
C H
$\mathrm{CH}_{r}-\mathrm{CH}_{r}-\mathrm{CH}_{r}-\mathrm{CH}_{r}$
آلكان راست زنجير

تعداد	1	r	r	f	Δ	9	V	\wedge	9	1.
بیشوند يونانى	مونو	ى	ترى	تترا	پنت	هگز	هيت	اوكت	نون	دٌ

 پسوند» آنن" آخر آلكان را به پسوند „- يل " تبديل مى كنيم.

($\mathbf{C o n}_{\mathbf{n}} \mathbf{H}\left({ }_{\text {¢ }}\right.$	${ }^{\text {CHF}}$		
كروه آلكيل)	CH_{\uparrow}	Cr H_{Δ}	

ب- آلكانهاى شاخه دار - براى ياد كرفتن بهتر اين روش را به چند مر حله زير تقسيم مى كنيم.

 1-انتخاب زنجير اصلى (بيشتر ين تعداد كربن بدون بر گشت وپرش روى كربن ها را زنجير اصلى مى گيرند).ץ-از طرفى كه به شاخه هاى فرعى نزديى تر باشد(شُماره كوحكتر تعلق كير د) .زنجير اصلى را شماره كذارى مى كنيم. به عنوان
 ولى اگر از سمت راست شماره گذارى شود . شاخه فرعى روى كربن شماره r مى باشد كه اين درست است.
$\begin{array}{llll}\mathrm{r} & \stackrel{r}{\mathrm{C}} \mathrm{CH} & \stackrel{r}{\mathrm{C}} \mathrm{C} & \stackrel{1}{\mathrm{C}} \mathrm{H} .\end{array}$

CH

شماره كربن محل شاخه هاى فرعى +تعداد(يششوند يونانى) ونام شاخه هاى فرعى به تر تيب الفباى للتين + نام زنجير اصلى به دو مثال زير دقت كنيد.
$\mathrm{CH}_{+}-\stackrel{r}{r} \mathrm{CH}-\mathrm{CH}_{+}^{r}-\mathrm{CH}-\mathrm{CH}_{+}^{\circ}$

CH
rror
Y-

r-اتیل هیتان

F-متيل هیتان

تو جه- حون اتيل(E) از نظر حروف الفباى لاتين بر متيل(M) مقدم است در نوشُتن ابتدا اتيل و سسس متيل را مى نويسيم.

نكتها - اگر هالورن ها به عنوان شاخه فرعى باشند . به آخر نام آنها (ٍ و،اضافه مى كنيم. مثلاً برم . برمو نوشته مى شود.

CH Br
نكته r-در صورتى كه از هر دو سر زنجير اصلى تايثرى بر محل شاخه فرعى نداشَّه باشَد . از طرفى درست تر است كه به شاخه مeدم (از نظر حروف الفباى لاتين) شماره كوجك تر بدهيم م

Cl
$\mathrm{CH}_{+}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{\text {. }}$
Br

مثال : : ب-برمو ، r-
((

$\mathrm{CH} \quad \mathrm{C}-\mathrm{CH}-\mathrm{CH}$.

CH CH

CH
rو r-دی متيل بوتان
$\mathrm{CH}, \mathrm{C} \mathrm{CH}, \mathrm{CH}$. CH

نكتهه-در مواردى كه حذف شماره محل شاخه فرعى تاثير بر محل آن نداشته باشد . شماره راحذف مى كند. مانند r-متيل بوتان .كه مى توانيم ץ را حذف كرده و متيل بوتان بنويسيم.

$$
\mathrm{CH}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}
$$

CH
تذكر - يكى از روش هاى نمايش فرمول ساختارى هيدروكر بن ها به ويرّه آلكان ها نـنطه - خط)است .كه بيوند بين اتم هاى كر بن با يك خط تيره و اتم هاى كربن رابا نقطه نشان مى دهند .در اين روش اتم هاى هيدرورّن را نشان نمى دهند.

r- متيل هֶنتان

هكزان

نكته 「- محل قرار گرفتن شاخه هاى فرعى در آلكان ها : متيل از كربن 「 به بعد . اتيل از كربن سه به بعد(يعنى محل آنها از تعداد كربن آنيا يك واحد بز ر كتر امى باشد.

سؤال ا - دانش آموزى نام تر كيب هايى را به صورت زير نوشته است . در صورت وجود اشتباه نام درست هر كدام را بنويسيد.

الف) ا -متيل بوتان

ب) با-اتيل . بمتيل پنتان

CH
$\mathrm{CH}, \mathrm{C} \mathrm{CHCH} \mathrm{CH}$.
CH, CH
سؤال Y - آلكان هاى زير را نام گذارى كنيد.

CH
$\mathrm{CH}_{\mathrm{CH}} \mathrm{CH}$,

CH
Br-CH-CH-CH-ج

Br

CH, $\mathrm{CH} \quad \mathrm{CH}, \mathrm{CH}, \mathrm{CH} \quad \mathrm{CH}, \mathrm{CH},-9$

CH
CH

CH

■ ا سوخت فندك. گاز بوتان است و تحت فشار بر مى شود. گاز شاز شهر مخلوطى ا ز هيدروكربن هاى سبك است كه متان بخش عمدة آن را تشكيل مى دهد .در حالى كه كپسول كاز خانگى. به طور عمده شامل گَازهاى بروپان و بوتان است. سؤال

آلكن ها، هيدروكربن هايى با يك پيوند دوكانه

 آلكن مى گويند.

اتن ساده ترين و نخستين عضو خانوادة آلكن هاست .اين ماده در بيشتر گیاهان وجود دارد .موز وگوجه فرنگى رسيده گاز اتن آزاد مى كنند.اتن آزاد شده از يى موز يا گوجه فرنگى رسيده به نوبه خود موجب رسيدن سريع تر ميوه هاى نارس مى شود . به همين دليل در كشاورزى. از گازاتن به عنوان (اعمل آورنده) استفاده مى شود.『 \downarrow به دليل سير نشد گى و وجود پيوند دو گانه در ساختار آن ها واكنش پذيرى بيش ترى نسبت به آلكان ها دارند.

نامكذارى آلكن ها ى راست زنجير

1-شاخه اصلى را از طرفى كه به يوند دوگانه نزديی تر است شماره كذارى مى كنيم.
 جايگز ين كنيم.

نكته - شماره كذارى در آلكن هاى راست زنجير. از \& كربن به بالل انجام مى شود.
$\mathrm{CH}_{+}=\mathrm{CH}$
پروپن
H
H
$C=C$
H
H
$\mathrm{CH}-\mathrm{CH}_{r}-\mathrm{CH}_{+}-\mathrm{CH}_{+}$
CH=CH بوتن
CH ا-
$\mathrm{CH}=\mathrm{CH}$

CH CH

CH.
CH

سؤال ا-آلكن هاى راست زنجير زير را انمكذارى كنيد.

$$
\mathrm{CH}-\mathrm{CH}_{r}-\mathrm{CH}_{r}
$$

CH

سؤال - فرمول ساختارى هر يك از آلكن هاى راست زنجير زير را بنويسيد.
الف- ب-هكَزن
ب- ب- بینتن
ج- 1- هكزن
سؤال - دانش آموزى تر كيب هايى را به صورت زير نامكذارى كرده است در صورت وجود اشُتباه . نام درست هر يك را بنويسيد. الف - - -بوتن ب-ه-هكَزن ج- ج- بروين

واكنش هاى اتن

كاز اتن سنگّ بناى صنايع پتروشيمى است: زيرا در اين صنايع با استفاده از اتن حجم انبوهى از مواد كوناكَون توليد مى شود.كه در زير به جند مورد اشاره مى شود.

1- وارد كردن كاز اتن در مخلوط آب و اسيد در شر ايط مناسب، اتانول را در مقياس صنتى توليد مى كنند.در اين واكنش اتم به يك اتم كربن وگروه OH به اتم كربن ديگكر متصل شده و با شكسته شدن پيوند دو گانه. تر كيب سير شده ايجاد مى شود.

ץ- از ديكر واكنش هاى كاز اتن. تر كيب شدن آن با برم مايع است .به طورى كه هر كاه كاز اتن را در محلولى از برم وارد كنيم. رنگ قرمز محلول از بين مى رود .اين تغيير رنگَ. نشَانه انجام واكنش شُيميايى زير است.

H H

$$
\mathrm{CH}_{r}=\mathrm{CH}_{r}(\mathrm{~g})+\mathrm{Br}-\mathrm{Br}(\mathrm{l}) \rightarrow \mathrm{Br}-\mathrm{C}-\mathrm{C}-\mathrm{Br}
$$

H H اووr دی برمو اتان
r- واكنش هاى پليمر شدن اتن كه در بخش سوم به طور كامل توضيح داده مى شود.

$$
\begin{array}{lllll}
& H & 11 & & \\
H & C & C & O & H
\end{array}
$$

T
r- الكل يكى از مهم ترين حلال هاى صنتىى بعد از آب است كه در تهيه مواد دارويى. بهداشتى و آر ايشى به كار مى رود.「-

فراور ده هاى پتروشيميايیى به چه فر اور ده هايیى مى كويند؟

به تر كيب ها. مواد و وسايل كوناگون كه ازنفت يا گاز طبيعى به دست مى آيند. فراورده هاى پتروشيميايى مى گويند. آمونياكى . سولفوريک اسيد. پاستيكى ها . حشره كش ها . مواد دارويى وآر ایشى و........ از اين نوع اند.

نكته- از آنبا كه آلكن ها سير نشده هستند با برم قرمز واكنش داده و آن را بى رنگّ مى كند. .ازاين واكنش در شناسايى تركيب هاى سير شده از تر كيب هاى سير نشده استفا استاده مى كند.

ها، سيرنشده تر از آلكن ها ها
 آلكين

. $C_{n} H_{(m-1+)}$ (n) \downarrow آلكين كُته مى شود.

نكته- ميزان سير نشُدىى آلكين ها از آلكن ها بيش تر است . به همين دليل واكنش غذيرى آن ها نيز از آلكن ها بيش تر است.

هيدروكر بن هاى حلقوى

هيدروكر بن هايى كه در آنيا اتم هاى كر بن طورى بـي به هم متصل اند كه ساختار حلقوى به خود مى گير ند. اين تر كيب ها به دو دسته
 سيكلو آلكان هال سيكلو به معناى حلقوى مى باشّد.) هيدروكر بن هاى حلقوى سير شده ای هستند كه تمام يبوند هاى كربن - كر بن در آن ها يكانه مى باشند .

نامكذارى سيكلو آلكان ها

سبكلو(حلةه) + نام آلكان هم كر بن. (ماند سيكلو بنتان. سيكلو هكَز ان و.........)

سيكلو هكَز ان
سؤال - فرمول ساختارى سيكلو بوتان و سيكلو بنتان را رسم كنيد.

نكته－تر كيب هاى سير نشده در اثر واكنش با كاز هيدرورن مى تواند به تر كيب سير شده تبديل شوند．للزم است بدانيد هر
 اتن يك پيوند دو گانه و در اتين يک ييوند سه گانه وجود دارد كه به ترتيب با يك و دو مول گاز هيدروزن به تر كيب سير شده（ اتان） تبديل مى شوند．

هيدرو كربن هاى آروماتيك（آروماتِكى به معناى معطر ）

دسته ای ازهيدروكربن هاى سير نشده ای كه ساختارى حلقوى دارند ．مانند بنزن ونتالن

الص سر گروه خانواده آروماتيك هاست．

『 فرمول ساختارى آن به صورت زير است．

نفتالن

V
『
 rr ∇

『 مدت ها به عنوان ضدبيد براى نگَهدارى فرش و لباس استفاده مى شد．『 فر مول ساختارى آن به صورت معابل است．

سؤال ا- نسبت شمار اتم هاى هيدرورْن به اتم هاى كربن درمولكول بروپين . حند برابر نسبت شمار اتم هاى هيدرورن به شمار اتم هاى كربن در مولكول نفتالن است؟

سؤال

سؤال
الف- آلكنى كه ه اتم كربن دارد. ب- آلكينى كه • ا ا اتم هيدروزن دارد.

سؤال F - بر اساس توضيح داده شده مورد درست را انتخاب كنيد. الف-ساده ترين هيدروكربن است.(متان - اتن †اتين)
 ج- فرمول شيميایى يك تر كيب سير شده مى تواند باشد. (C)

نفت، ماده ای كه اقتصاد جهان را دكر كون ساخت

 च ت تر يباً . 1 درصد هر بشَه نفت خام به عنوان خوراك يتروشيمى جهت ساختن مواد مختلف استفاده مى شود.

جزء به جزء جدا مى كنند. كه به اين فر ايند پالايش نفت خام مى گويند.

يادآورى-تقطير جزء به جزء روشى براى جدا كردن مخلوط حند مايع حل شده در هم با استفاده از اختلاف در نتطه جوش آن ها مى باشد.

بعد از جدا كردن نمك و اسيد موجود در نفت خام از تقطير جزء به جزء．هيدروكربن هاى آن را به صورت مخلوط هايى با نقطةُ جوش

 الكتر يكى ارزان قيمت مى شد ．همة اين روند سبب شد تا ارزش و اهميت طلاى سياه روز به روز بيشتر شود تا جايى كه استفاده و شناخت بيشتر آن．حهرة زندگى را آشكارا تغيير داد．

『ا \downarrow
سوخت. جايكز ين نفت شود.
『 ا اين ماده．بر اكند گی نسبى مناسبى در سر اسر جهان دارد و تقر يباً در همه كشور ها يا يافت مى شود．

اكسيرّن نيز دارد.

च شر ايط استخر اج آن دشوار است．

سؤال－چراجاي乏زينى نفت با زغال سنگ سبب تشديد اثر كلخانه اى مى شود؟

مقدار كربن دى اكسيد（g）به ازاى هر كيلو زول انرزی توليد شده	فر اورده هاى سوختن	\％كرماى آزاد شده（kJ．g－1	نام سوخت
．$/ .90$	$\mathrm{CO}_{4}, \mathrm{CO}, \mathrm{H}_{4} \mathrm{O}$	＋1	بنزين
． 11.4	$\mathrm{CO}_{+}, \mathrm{CO}, \mathrm{H}_{+} \mathrm{O}, \mathrm{NO}_{+}, \mathrm{SO}$	r ．	زغال سنى

روش هاى بهبود كارايى زغال سنى

V كلسيم سولفيت

$$
\mathrm{SO}_{r}(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s}) \rightarrow \mathrm{CaSO}_{r}(\mathrm{~s})
$$

يكى از دشوارى هاى مو جود در را ه استخر اج زغال سن؟ چیيست و چگونه مى توان آن را كاهش טاد؟در صور تى كه مقدار كاز متان（ كاز سبك بى بو و بى رنگ）آزاد شده از زغال سنگ در هواى معدن．بيش ازه د درصد شود با عث انفجار معدن و ايجاد خسارت مى شود．

توجه－يكى از راه هاى كاهش متان در هواى معدن استفاده از تهويه مناسب و قوى است．

حمل ونقل هوايى ومزايا و معايب آن
مزايا

داشتن هز ينه بسيار بال از ايراد هاى حمل و نقل هوايى است كه سبب مى شود تعداد محدودى از شر كت ها مانند پست وشمار محدودى از افراد جامعه بتواند از آن استفاده كنند．
■ الصريع ترين حالت حمل ونقل
『ا عدم نياز به جاده سازى و تعميرات آن
『

توليد مى شود.

V توليد اين سوخت يكى از صنايع مهم و ارز آور است كه به دانش فنى بالايى نيز نياز دارد. انتّال اين سوخت يكى از مسائل مهم در تأمين آن است كه در حدود 4 ان درصد آن از طريق خطوط لوله و بقيه با استفاده از راه آهن . نفتكش جاده پیما و كشتى هاى نغتى انجام مى شود.

در يِّ عذاى سالهم

 در بدن جاندر ان ذخير هم هـ شود.

 تغيير شيوه زند گى . تأمين غذا دشوار شد. در اين ميان انسان حهه راه كارهايى براى غاى غلبه بر اين دشوارى انديشيده است؟ آيا اين راه كارها براى تأمين غذا هـ انسان ها كافى است؟

تذكر - يكى از غلات بر مصرف براى تأمين غذا . كندم است.

شايد يك روز آقتابى تصميم بكير يد با دوستان براى كردش و پياده روى به دشت يا كوه برويد در آغاز پياده روى با حر كت آرام آرام

 ياسخ بر سش هايى از اين دست مى بردازد ـ شمها در ادامه از آن آكاهى خواهيد يا يافت .

دماى يك ماده از چه خبر مى دهد؟

 شديدتر از حالت جامد است.

ها هر جه دماى يك جسم بالاتر باشد. جنبش هاى نامنظم ذره هاى آن نيز شديدتر است.

اكنون به معرفى دو مفهوم ساده و اساسى دما و كرما مى پردازيم

『 \downarrow معيارى است كه ميز ان سردى وكرمى جسم را نشّان مى دهد.

-
 ($\left.\mathrm{J}=1 \mathrm{kgm}^{+} \mathrm{s}^{+}, \quad \mid \mathrm{cal}=\uparrow / / \wedge \uparrow \mathrm{J} \mathrm{J}\right) \quad$.

نكته -انر ثى گرمايى علاوه بر دما به مقدار ماده نيز بستگى دارد اما دما تابع مقدار ماده نيست.
مثال رابطه ميان مقدار كر ما با دما
سؤال - تصور كنيد ظرفى محتوى . .
 پِاسخ منیى است زيرا دما در مقدار گرما تأثير دارد و براى رساندن دماى روغن تاV

سؤال Y - با توجه به شكل ها به موارد زير پاسخ دهيد . آ)ميانگين سرعت حر كت مولكول هاى اتانول ,ا در هر دو ظرف با نوشتن دليل مقايسه كنيد.
$10 \circ \mathrm{~mL}$
اتتغون خلال
اتكون خلمس
$\mathrm{T}=\mathrm{r} 0^{\circ} \mathrm{C}$
(1)
(r) طرف

سؤال - ششكل زير ذره هاى تشكيل دهنده ى يك ماده را از ديد مولكولى نشان مى دهد . اين ذره ها در حال حر كت هستند و دنباله هر ذره ، نشاندهنده سرعت حر كت آن است . اكنون به پֶرسش هاى زیر پاسخ دهيد :

سؤال F - حر ابوى غذاى گرم آسان تر و سريع تر از غذاى سرد به مشام مى رسد؟

ظرفيت كرمايى: ميزان كرمايى كه به جسم داده مى شود تا دماى آن ºC بالU رود.

تذكر - ظرفيت گرمايى در واقع معيارى از ميزان وابستگى تغيير دماى يك جسم به مقدار گرماى مبادله شده است .

ظرفيت كرمايى يك ماده به چه عواملى بستكى دارد؟

 ظرفيت گرمايى در دما و فشار اتاق. افزون بر نوع ماده به مقدار آن نيز بستگى دارد.
مثال زير اثر نوع ماده را بر ظرفيت كرمايى نشان مى دهد.

 مرغ در اين دما درون آب پخته مى شود اما درون روغن زيتون تغيير محسوسى نخواهد كرد.زيرا نوع ماده متفاوت است سِ ظرفيت گرمايى متفاوتى خواهند داشت.

سؤال --ا توجه به مثال بال به نظر شما ظرفيت گرمايى آب و روغن زيتون كداميك بيش است ؟ حر ا؟

:(c)ه: (c):

 Y-ظرفيت گرمايى يی گرم از هر ماده را گرماى ويزَه آن ماده مى گويند.

نكته| - گرماى ويرّه فقط به نوع ماده بستىى دارد . حال آن كه ظرفيت گرمايى به نوع و مقدار ماده بستگى دارد.

سؤال ا-اتيلن كليكول يكى نوع الكل است كه از آن به عنوان ماده ی ضد يخ در رادياتور خودروها استفاده مى شود. . ب كرم اتيلن

سؤال اين فلز كدام يى از فلز هاى موجود در جدول زير است؟

سرب	آهن	- نقر	هس	فلز
, / 1 ¢ 人	$.140$	- Mro	$\cdot / r \wedge \Delta$	J.g ${ }^{-1} \mathrm{C}^{-1}$ كاى ويثه

سؤال

D $<\mathrm{B}<\mathrm{C}<\mathrm{A}$ (${ }^{\text {个 }}$
$\mathrm{C}<\mathrm{A}<\mathrm{D}<\mathrm{B}(r$
$\mathrm{B}<\mathrm{D}<\mathrm{A}<\mathrm{C}(\mathrm{r}$
$\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}(1$

سؤال F - با توجه به جدول زير اگر بخواهيم از فلزات فرضى Bو A A داى درست كردن ظرف غذا خورى درست كنيم .كدام فلز رI براى ظرف و كداميى را براى دسته آن انتخاب مى كنيد. (قيمت و نكات بهداشتى را در حل ناديده بكيريد.)

B	A	فلز
./A	1/0	J.g ${ }^{10} \mathrm{C}^{-1}$ كرماى ويثر

سامانه(سيستم) - بخشى از جهان هستى است كه تغيير انر ثى آن را مورد بر رسى قرار مى دهيم. محيط- آنحه اطر اف سامانه قرار دارد كه در ارتباط با آن نيز باشد . محيط سامانه مى گويند.

در مثال زير سامانه و محيط به كونه بسيار ساده معرفى شده اند. فرض كنيد در حال خوردن مقدارى شير گرم با دماىC 4 باشيد. سِ از ورودشير به بدن:
 1- نخست

انجام اين فر ايند را از ديدكاه انر ثى مى توان با نمودار زيرنشان داد.

Y-بخش عمدةٔ انر زى موجود در شير هنگام فرايند گوارش و سوخت وساز به بدن مى رسد. فرايندهايى كه با انجام واكنش هاى شَيميايى گوناگونى همر اه است .به ديگر سخن انجام مجموعه اين واكنش ها منجر به توليد انر انى و مواد اوليه مورد نياز سوخت وساز ياخته ها خواهد شد . تغيير انر زى وابسته به مجموعه اين واكنش ها را نشان مى دهد.

 تذكر - به هنگام خوردن يك بستنى . فر ايند هم دما شدن آن در بدن با جذب انر ریى در حالى كه گوارش و سوخت و ساز آن با آزاد شَدن انر ری همراه است.

1- اين دستگاهشامل دو ظرف سفالى(ساخته شده از خاك رس) كه درون يكديگر قرار دارند و

 كه معادلة انجام اين فر ايند به صورت زير است:

$$
\mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{l})+\mu \uparrow / \mathrm{kJ} \rightarrow \mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{~g})
$$

ץ ץ- اين دستگاه ساده و ارزان توسط يك معلم مسلمان نيجر يايى به نام محمد باه آبا ساخته و به سرعت در مقياس صنعتى توليد و فر اگير شد.
 به ايشان اهدا مى كند.

كرما در واكنش هاى شيميايى(كرماشيمى)

ترموشيمى(كرما شيمى) -شاخه ای از علم شُيمى كه به بر سىى كمى و كيفى كرماى مبادله شده در واكنش هاى شيميايى . تغيير آن و تأُثيرى كه بر حالت ماده دارد . مى برد دازد.(ترمو به معناى كَرما يا يا حر ارت است.)

『

انواع واكنش ها بر اساس تبادل انر زی با محيط
 واكنش هاى كر ماده

『ا
 (Q) در سمت راست معادله واكنُ (جزء هر اور ده ها) نوشته مى شود. نمودار واكنش هاى كرماده را به دو صورت زير مى توان نشان داد.

-

 دماى roº قرار مى دهيم . به تدريج سامانه(آب خالص) بخشى از انر (ی خود رابه صورت گرما به محيط پير امون منتقل مى
 كند تا سر انجام هم دما شوند.كه در اين عمل انر (ی سامانه(آب خالص) كاهش مى يابد.(شكل زير)

 V انر انى از محيط بير امون به سامانه جارى مى شود.

نمودار واكنش هاى كر ماكير را به دو صورت زير مى توان نشان داد.

مثال اول-به عنوان نمونه اگر مقدارى يخ با دماى اين عمل تا جايى ادامه مى يابد كه دماى سامانه با دماى محيط يكسان شود. در نتيجه انرزى آب از يخ بيش تر خواهد بود.

كاربرد كرما شيمى در زندكى روزانه

گرماشيمى نتش و اهميت زيادى در زندگى روزانه ما دارد به عنوان نمونه به موارد زير اشاره مى شود. الف)مواد غذايى سِ از گوارش. انر (یى للزم براى سوخت وساز ياخته ها را در بدن تأمين مى كنند. ب)سوختن سوخت ها. انر (ى للزم براى حمل و نقل و نيز گرمايش محيط هاى گوناگون را فراهم مى كنند. ״) غزال كی. واكنش دهنده ای رايج در استخر اج آهن بوده كه تأمين كننده انر (یى للزم براى انجام اين واكنش نيز است.
 است كه هر يك از اين واكنش ها مى تواند گرماده يا گرماگير باشد. مثال - واكنش اكسايش كلوكز در بدن با آزاد سارى انر زى همراه است كه نمودارانجام اين واكنش به صورت زير است. $\mathrm{C} . \mathrm{H}, \mathrm{O},(\mathrm{s})+9 \mathrm{O},(\mathrm{g}) \rightarrow 4 \mathrm{CO},(\mathrm{g})+9 \mathrm{H}_{\mathrm{O}} \mathrm{O}(\mathrm{l})+r \wedge \cdot \wedge k \cdot \mathrm{~J}$

ميزان انرزى(كرما) مبادله شده در واكنش هاى شيميایی از چه چیيزى ناشى مى شود؟

 دهنده و فراورده نيست !ازيرا در دماى ثابت.تفاوت حشمڭيرى ميان انر ثى گرمايىى آنها وجود ندارد.
 حچكونگى اتصال اتم ها به هم (پيوند ميان اتم ها) مى دانند.در واقع با انجام واكنش شيميايى و تغيير در شيوه اتصال اتم ها به يكديغر . تفاوت آشكارى در انر خى پتانسيل وابسته آنها ايجاد مى شود. كه اين تفاوت انر (پى در واكنش ها به شكل گرما ظاهر مى شود.
 مثال - سامانه ای محتوى يك مول كاز هيدرورن و يكى مول گاز كلر را با دماى roº در نظر بگير يد . $\mathrm{H}-\mathrm{H}(\mathrm{g})+\mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \rightarrow$ ヶH-Cl$(\mathrm{g})+1 \wedge \uparrow \mathrm{~kJ}$

با انجام واكنش شديد ميان آنها افزون بر كاز هيدرورن كلريد. گُرماى زيادى نيز توليد مى شود. آزمايش نشان مى دهد هنگامى كه
 است است.

سؤال ا--با توجه به شكل هاى داده شده ، اگر قاشق را در فنجان پپ از آب قرار دهيم با حذف گز ينه هاى نادرست عبارت هاى درست را بنويسيد.

سؤال عبارت زير درست و كدام نادرست مى باشد. الف - نماد(Q) ,ا در معادله واكنش وارد كنيد. ب- نمودار انر ثى- ييشرفت واكنش را براى آن رسم كنيد.

ب- ضمن انجام اين واكنشَ انر (ی سامانه . كاهش مى يابد يا افزايش ؟ چحر ؟؟

سؤال

1) $\mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{l})$

ヶ) $\mathrm{CH}_{\uparrow}(\mathrm{g})+\mathrm{rO}_{\uparrow}(\mathrm{g}) \rightarrow \mathrm{CO}_{\uparrow}(\mathrm{g})+\mathrm{rH}_{\mathrm{r}} \mathrm{O}(\mathrm{g})$

سؤال F - اتم هيدروزن در حالت پايه پايدارتر است يا اتم هيدرورن بر انگیخته شده؟ چر ا؟

سؤال ه - با ذكر دليل نماد Q Qا در معادله زير وارد كنيد.(" Clاتم كلربر انگيخته است.)

$\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}^{*}(\mathrm{~g})$

كر ماى واكنش ها به چه عواملى بستكى دار د؟در دما وفشار ثابت. به نوع مواد شر كت كننده. حالت فيز يكى هر يك از مواد و مقدار واكنش دهنده ها بستگى دارد.

نوع مواد شركت كننده مثال ا- اگر بدانيم پايدارى گرافيت از پايدارى الماس بيش تراست . گرماى حاصل از سوختن كدام يكى بيش تر است؟حر ا؟

مثال

$$
\begin{aligned}
& \text { 1) } \uparrow K(\mathrm{~s})+\mathrm{H}_{\mathrm{r}}(\mathrm{~g}) \rightarrow \uparrow \mathrm{KH}(\mathrm{~s}) \\
& \text { r) } r \operatorname{Li}(\mathrm{~s})+\mathrm{H}_{\mathrm{r}}(\mathrm{~g}) \rightarrow r \operatorname{LiH}(\mathrm{~s})
\end{aligned}
$$

مقدار واكنش دهنده ها

$$
\begin{aligned}
& \text { 1) } \mathrm{C}(\mathrm{~s}, \mathrm{G})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{CO}_{r}(\mathrm{~g})+\mathrm{Q}_{r} \\
& r) r \mathrm{C}(\mathrm{~s}, \mathrm{G})+r \mathrm{O}_{r}(\mathrm{~g}) \rightarrow r \mathrm{CO}_{r}(\mathrm{~g})+Q_{r}
\end{aligned}
$$

-

مثال Y - گرماى جذب شده واكنش (Y) از واكنش ((1) كم تر است .زيرا مقدار واكنش دهنده ها در واكنش دوم كم تر است.

$$
\begin{aligned}
& 1) Q_{r}+\mathrm{N}_{r}(\mathrm{~g})+r \mathrm{H}_{r}(\mathrm{~g}) \rightarrow r \mathrm{NH}_{r}(\mathrm{~g}) \\
& r) Q_{r}+\frac{1}{r} \mathrm{~N}_{r}(\mathrm{~g})+\frac{r}{r} \mathrm{H}_{r}(\mathrm{~g}) \rightarrow \mathrm{NH}_{r}(\mathrm{~g})
\end{aligned}
$$

نكته ا-أز آنجا كه تغيير حالت فيزيكى ماده با تغيير انر (یى همراه است. سطح انر مقايسه مى شُود.

نكته Y فر ايندهاى ذوب . تبخير وفرازش كرماكيرند اما فر ايندهاى ميعان . انجماد و چگالش گرماده هستند.

نكتهr--بر ای يك ماده معين. گرماى جذب شده به هنگام تبخير از گرماى ذوب بيش تر وكرماى آزاد شده به هنگام ميعان از كرماى آزاد شده به هنگام انجماد نيز بيش تر مى باشد.

مثال ا -كرماى آزاد شده در وفر ايند ((1) از فر ايند(r) بيش تر است . زيرا سطح انر ری بخار جيوه از جيوه مايع بالاتر است.

$$
\begin{aligned}
& \text { 1) } \mathrm{Hg}(\mathrm{~g}) \rightarrow \mathrm{Hg}(\mathrm{~s}) \\
& \text { r) } \mathrm{Hg}(\mathrm{l}) \rightarrow \mathrm{Hg}(\mathrm{~s})
\end{aligned}
$$

مثال Y Y گرماى آزاد شده . در كدام واكنش زير بيشتر است؟ واكنش (Y) . زيرا سطح انر انى آب به حال مان آع نسبت به بخار آب كمتر است.

1) $\mathrm{HH}_{r}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{H}_{r} \mathrm{O}(\mathrm{g})$

سؤال I- الف -واكنش هاى زير گرماده اند يا گرماگير ؟چحر ؟؟
ب- جٍر ادر شر ايط يكسان دما وفشار . ميزان گرماى مبادله شده . دو واكنش زير يكسان نيست؟

$$
\begin{aligned}
& \text { 1) } \mathrm{C}_{.} \mathrm{H}_{2} \mathrm{OH}(\mathrm{l})+\mathrm{rO}_{+}(\mathrm{g}) \rightarrow \mathrm{rCO},(\mathrm{~g})+\mathrm{rH}_{+} \mathrm{O}(\mathrm{l}) \\
& \mathrm{r})_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{rO}_{2}(\mathrm{~g}) \rightarrow \mathrm{COO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

ب-انتظار داريد گرماى كدام واكنش بيش تر باشد؟ حِر ا؟

سؤال r -

$$
\begin{aligned}
& \mathrm{Q}+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{I}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \\
& \mathrm{Q}_{r}+\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{~s}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{s}(\mathrm{~g})
\end{aligned}
$$

سؤال + - با توجه به اطلاعات داده شده گرماى آزاد شده در كدام واكنش زير بيش تر است ؟ حر ا؟

1) $\mathrm{CrH} \wedge(\mathrm{g})+\Delta \mathrm{Or}(\mathrm{g}) \longrightarrow \mathrm{COr}(\mathrm{g})+ヶ \mathrm{HrO}(\mathrm{g})$
r) $\mathrm{CrH} \mu(\mathrm{g})+\Delta \mathrm{Or}(\mathrm{g}) \longrightarrow \mathrm{COr}(\mathrm{g})+ヶ \mathrm{HrO}(\mathrm{l})$

آنتالِّى ، همان محتواى انرثى است

هر نمونه ماده شامل مجموعه ای از شمار بسيار زيادى ذره هاى سازنده است.اين ذره ها افزون برجنبش هاى نامنظم . با يكديگر بر هم
 ماده با مقدار آن در دما و فشار معين توصيف مى شود.به طورى كه . . بكرم آب در دما و فشار اتاق را مى توان يكى نمونه ماده دانست .اينگ ظرفى را در نظر بگير يد كه محتوى اين نمونه ماده باشد. حنين مجموعه ای يك سامانه به شمار مى رود. شیمیى دان ها انر زی كل چنين سامانه ای را هم ارز با محتواى انر زی يا آنتاللى آن مى دانند. با این توصيف هر سامانه در دما و فشار ثابت. آنتالٍى معينى دارد.
 ثابت باشند از اصطلاحات ويرّه ای استفاده مى كنند د نكته - حون بيش تر واكنش ها در فشار ثابت انجام مى شوند.سِ در آن ها آنتاللیى اندازه گيرى مى شود. آنتالیی (H)

$$
\begin{gathered}
\Delta H(\text { مواد فر اورده })=H(\text { مواكنس })=H \text { (مواد واكنس دهنده) })=Q_{p} \\
\Delta H=Q_{p}
\end{gathered}
$$

تذكر - شيمى دان ها براى يك واكنش اغلب به جاى تُيبر آنتالىى واكنس . وازه آنتاللى واكنس را به كار مى برند.
 واكنش هاى گرماده و گرماگير اشاره شد دو باره تكر ار خواهيم كرد.

حالا نوبت شماست

سؤال ا--در هر يك از شكل هاى رو به رو ، سامانه ى(سيستم)مورد مطالعه محتويات درون لوله ى آزمايش است . تبادل كرمايى در كدام سامانه:

الف- علامت مثبت داشته و مقدار آن با qp برابر است ؟ حرا ؟ ب- علامت منفى داشته و مقدار آن با q بر ابر است؟حر ا؟؟

سؤال - - با توجه به شكل روبه رو:
الف -معادله واكنش اين فر ايند را نوشته وعلامت HHآن را مشخص كنيد. ب- مقدار ΔH اين فرايند حند كيلو زول است ؟

واكنش هاى كرماده

『 آنتالبى فر اورده ها از آنتالبى واكنش دهنده ها كم تر است.

واكنش هاى كرماكير

『 آنتالبى فر اورده ها از آنتاللى واكنش دهنده ها بيش تر است.
『ا پايدارى فراورده ها از پايدارى واكنش دهنده ها كم تر است.(پايدارى مواد با سطح انر پیى آنها رابطه عكس دارد.)

نكته - مقدار عددى »

تغييرات كرماكير وكرماده

كرماده (($\Delta \mathrm{H}>0$) (
	ذوب . تبخير . فرازش(تصبيد) تغيير ات فيز يكى گرماكيرند.
سوختن مواد	شكستن پيوند بين ذرات (اتم ها . مولكول ها و و يون ها

بسته هاى سر ماز ا و كر مازا
 كلريد خشک مى باشد. در اثر ضربه زدن پا فشردن كيسه پاستيكى . بسته آب پاره شده و ضمن حل شدن كلسيم كلر ید در آن. انر پیى زياد آزاد مى شود.

$$
\mathrm{CaCl}_{\mathrm{r}}(\mathrm{~s}) \xrightarrow{-} \mathrm{Ca}_{(\mathrm{aqq})}^{\mathrm{r}+}+\mathrm{rCl}_{(\mathrm{aq})}^{-}+\lambda \mathrm{rkJ}^{-}
$$

بسته هاى گر ماكير - این بسته ها داراى يک كيسه پاستيكى كه درون آن يک بسته كوچى آب ومقدار معينى تر كيب يونى آمونيوم نيترات مى باشد. در اثر ضربه زدن يا فشر دن كيسه پلاستيكى . بسته آب پاره شده و ضمن حل شدن آمونيوم نيترات در آن، انرزی از محيط جذب مى شود.
$\mathrm{NH}_{4} \mathrm{NO}_{r}(\mathrm{~s})+r \not \mathrm{kJJ}^{-} \mathrm{NH}_{+(\mathrm{aq})}^{+}+\mathrm{NO}_{r(\mathrm{aq})}$
－
 هاى مجزا گازى شكل را آنتالِى پيوند مى نامند． مثال اول－آنتالليى پيوند
$\mathrm{H}_{\mathrm{r}}(\mathrm{g}) \rightarrow \Gamma \mathrm{H}(\mathrm{g}), \Delta \mathrm{H}_{\mathrm{H}-\mathrm{H}}=+\uparrow r \varsigma \mathrm{~kJ} . \mathrm{mol}^{-1}$ مثال دوم－آنتالبى بيوند

نكته－در گونه هايى كه چند پيوند كوالانسى يكسان وجود دارد．آنتالبى نخستين پيوند با دومين．دومين با سومين و ．．．متفاوت است ． در حنين حالت هايىى بايد ميانگیين آنتالِى پيوند به كار رود．
 $\mathrm{H}-\mathrm{OH}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}), \Delta \mathrm{H}_{\mathrm{H}-\mathrm{OH}}=+\varphi ৭ 9{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{-1}$ $\mathrm{O}-\mathrm{H}(\mathrm{g}) \rightarrow \mathrm{O}(\mathrm{g})+\mathrm{H}(\mathrm{g}), \Delta_{\mathrm{HO}-\mathrm{H}}=+\uparrow ヶ \wedge \mathrm{~kJ}^{2} . \mathrm{mol}^{-1}$

در جدول آنتاللِى هاى پيوند ميانگين اين دو مقدار درج شده است：

$$
\Delta H_{\mathrm{O}-\mathrm{H}}=\frac{1}{r}\left(\Delta \mathrm{H}_{\mathrm{H}-\mathrm{OH}}+\Delta \mathrm{H}_{\mathrm{O}-\mathrm{H}}\right)=\frac{1}{r}(\uparrow q 9+\uparrow r \wedge)=+ヶ r \varsigma / \Delta \mathrm{kJ} \cdot \mathrm{~mol}^{-1}
$$

مثال Y－آنتاللى پيوند C－H در مولكول متان（CH\＆）．طبق واكنش زير بر ابر ميانگين \＆بيوند موجود در اين ماده يعنى است $10 \mathrm{~kJ} . \mathrm{mol}^{-}$

$$
\mathrm{CH}_{4}(\mathrm{~g})+1 \varsigma \varsigma \cdot \mathrm{~kJ} \rightarrow \mathrm{C}(\mathrm{~g})+ヶ \mathrm{H}(\mathrm{~g})
$$

پیيوند	F-F	$\mathrm{Cl}-\mathrm{Cl}$	$\mathrm{Br}-\mathrm{Br}$	I-I	H-F	$\mathrm{H}-\mathrm{Cl}$	$\mathrm{H}-\mathrm{Br}$	H-I	$\mathrm{O}=0$	$\mathrm{N} \equiv \mathrm{N}$
آنتالپى (kJ.mol	10Δ	PFY	19\%	101	DFV	Fwl	r9\%	999	F9b	9FD

جدول(Y) ميانكين آنتالپى برخى پيوند ها

| (kJ.mol) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

سؤال - در هر يك از موارد زير علامت

1) $\mathrm{Hg}(\mathrm{l}) \rightarrow \mathrm{Hg}(\mathrm{g})$
r) $\mathrm{rC} \mathrm{C}_{.} \mathrm{H}_{5}(\mathrm{~g})+\mathrm{VO}_{4}(\mathrm{~g}) \rightarrow \uparrow \mathrm{CO}_{5}(\mathrm{~g})+9 \mathrm{H}_{4} \mathrm{O}(\mathrm{l})$
$\left.{ }^{\mu}\right) \mathrm{KCl}(\mathrm{s}) \rightarrow \mathrm{K}_{(\mathrm{g})}+\mathrm{Cl}_{(\mathrm{g})}$
f) $\mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{+} \mathrm{O}(\mathrm{l})$
$\Delta) \mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+\varphi \mathrm{H}(\mathrm{g})$

آنتالٍى سو ختن تكيه كاهى براى تامين انرزی

 هاى بدن را تأمين مى كند.

آنتالى سوختن - وقتى يک مول ماده به سرعت در اكسيزن كافى بسوزد ـ گرماى آزاد شده را آنتالِى سوختن مى گويند.

نكاتى در مورد آنتالیی سوختن
『 سوختن يک تغيير شيميايى است كه سريع بوده و با توليد انر (ی به صورت نور . كرما وصدا مى باشند.
 كشاورزى و زند گى روزانه استفاده مى شود.
-
 دماى اتاق به حالت مايع است.
به عنوان نمونه معادله سوختن كامل كاز شهرى به صورت زير است.(كاز شهرى . به طور عمده از متان تشكيل شده است.)

$$
\mathrm{CH}_{+}(\mathrm{g})+\mathrm{rO}_{\varphi}(\mathrm{g}) \rightarrow \mathrm{CO}_{\uparrow}(\mathrm{g})+\mathrm{rH}_{+} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-\wedge q \cdot \mathrm{~kJ} . \mathrm{mol}
$$

لا به طور كلى هر حه جرم هيدروكربنى بيش تر باشد . آنتالیى سوختن آن نيز بيش تر است.

ماده آلى	$\mathrm{CH}_{4}(\mathrm{~g})$	C. $\mathrm{H}_{4}(\mathrm{~g})$	$\mathrm{Cr}_{r} \mathrm{H}_{5}(\mathrm{~g})$	$\mathrm{C}_{\mathrm{r}} \mathrm{H}_{5}(\mathrm{~g})$	
جرم مولى (g.mol	19	rı	r.	fr	
آنتالِى سوختن (${ }^{\text {(kJ. }}$)	- 19.	-\|f	.	-104.	$-r \cdot \Delta \wedge$

سؤال ا - گرماى ناشى از سوختن 1 مول كدام هيدروكربن زير بيش تر است؟ چرا؟ $\mathrm{C}_{4} \mathrm{H}_{1}, \quad \mathrm{C}_{\curlyvee} \mathrm{H}_{4}$

ها هنگام سوختن مقدار يكسان از هيدروكربن هاى مختلف. هر كدام جرم مولى كمتر ى داشته باشد . كرماى آزاد شده از آن بيشتر است. به عنوان نمونه گرماى ناشى از سوختن • ا گرم متان از گرماى ناشى از سوختن • ا گرم پروپان طبق محاسبه زير

$$
\begin{aligned}
& ? \mathrm{~kJ}=1 \cdot \mathrm{gCH}_{+} \times \frac{1 \mathrm{molCH}_{+}}{1 \varsigma \mathrm{CH}_{\leftarrow}} \times \frac{-\wedge q \cdot \mathrm{~kJ}}{1 \mathrm{molCH}_{\leftarrow}}=-\Delta \Delta \varsigma . r \Delta \mathrm{~kJ} \\
& ? \mathrm{~kJ}=1 \cdot \mathrm{gC}_{r} \mathrm{H}_{\wedge} \times \frac{1 \mathrm{molC}_{r} \mathrm{H}_{\wedge}}{4 \uparrow \mathrm{C}_{r} \mathrm{H}_{\wedge}} \times \frac{-r \cdot \Delta \wedge \mathrm{~kJ}}{1 \mathrm{molC}_{r} \mathrm{H}_{\wedge}}=-\uparrow q \cdot \mathrm{~kJ}
\end{aligned}
$$

گازی است كه تنها با سرد كردن و بدون اعمال فشار به مايع تبديل نمى شود. ا از تجزيه كياهان به وسيله باكترى هاى بى هوازى در زير آب نيز توليد مى شود.

目 حشرات بيش از . اV ميليون تن گاز متان در سال توليد مى كنند)
به طور مستقيم و بر طبق واكنش زير قابل تهيه نيست .زيرا تأمين شر ايط بهينه براى آن بسيار دشوار و هزينه بر است.

رييوند با زندكى

واكنش ترموشيميايى- هر واكنش شيميايى كه آنتالِى ($ا$) مر بوط به آن نيز داده شود ـ واكنش ترموشيميايى كفته مى شود. (ترمو به معناى گرما يا حرارت مى باشد.)

ياد آورى - سوختن و اكسايش .واكنش هايى هستند كه در آن ها ماده با اكسيرْن تر كيب مى شود . اما سوختن يك واكنش تند و اكسايش يک واكنش كند است.از طرفى مى دانيم كه عوامل كوناكونى همحون (نوع و حالت فيز يكى مواد شر كت كننده . مقدار واكنش دهنده ها . دما و فشار) بر آنتاللى واكنش ها تأثير دارند . حال كه معادله سوختن و اكسايش كلوكز از هر لحاظ مشابه هم اند. سر آنتالبى ناشى از آنها نيز برابر است.وبرطبق دعادله ترموشيميايى زير است.

$$
\mathrm{C}_{\varphi} \mathrm{H}_{r r} \mathrm{O}_{\varphi}(\mathrm{s})+\varsigma \mathrm{O}_{r}(\mathrm{~g}) \rightarrow \varsigma \mathrm{CO}_{r}(\mathrm{~g})+\varsigma \mathrm{H}_{r} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-\mu \wedge \cdot \wedge \mathrm{kJ}
$$

كر بوهيدرات ها . حربى ها و ثروتئين ها سه ماده غذايى مهمى هستند كه . بدن ما از غذاها دريافت مى كند. اين مواد نه تنيا

 آن قند خون نيز مى گويند. خون با انتقال اين كلوكز به ياخته ها و انجام عمل اكسايش در آنها به سرعت انر (زى للزم براى ياخته ها را. فر اهم مى كند.

نكته - جربى ماده ای است كه در آب نامحلول بوده از طر فی ارزش سوختى بالاترى نسبت به دو ماده غذايى ديكر دارد به همين دليل بدن آن را به مقدار بيش تر و بهتر از آن دو ذخيره مى كند :به جدول زير دقت كنيد.

ماده غذايى	كربو هيدرات	بروتنين	\%
ارزش سوختى (k.l.g	IV		r^

تذكر - ميز ان انر گی مورد نياز بدن هر فرد به عواملى همحون وزن . سن و ميز ان فقاليت هاى روزانه او بستّى دارد.
نكته - انرثى دريافت شده از مواد غذايى هم چنين معدار اضافى مواد در بدن به طور عمده به صورت حربى ذخيره شده و با عت چاقى

ارزش سوختى برخى خور اكى ها

(k. ارزش سوختى()	خوراكى
11/ه	نان
r.	پֶير
9	تخم مرغ
11	شكلات
r	شير
rr	بادام زمينى

ارزش سوختى -انرُى آزاد شده به هنگام سوختن واحد جرم (معمولاً اكرم) ماده را ارزش سوختى آن ماده مى كويند و بايكاى كيلو رُول بر كرم بيان مى كندي

نكته - واكنش سوختن به دليل كُرماده بودن با علامت منفى نشان مى دهند اما ارزش سوختى را بدون علامت كزارش مى كند.

 اثر اكسايس آن ها در بدن . نيترورزن به طور عمده به شَكل اوره در مى آيد.

$$
\begin{aligned}
& \text { يادآورى- سوخت هاى سبز در ساختار خود افزون بر هيدروزن و كربن. اكسيرَن نيزّ دارند و از سِماند هاى گُيا هانى مانند سويا. } \\
& \text { نيشكر و ديگر دانه هاى روغنى استخر اج مى شوند.مانند اتانول } \\
& \text { ب-روش هاى غير مستقيم كه با استفاده از قانون هنرى هس و آنتالپى ميانكين پیوند مواد صورت مى كير د. } \\
& \text { كر ماسنجى ، روش مستقيم تعيين كرماى واكنش ها } \\
& \text { كر ماسنج - دستگاهى است كه براى اندازه گیرى گرماى مبادله شده در يى واكنش شیميايى به كار مى رود. } \\
& \text { انواع كر ماسنج ها } \\
& \text { گرماسنج ليوانى و گرماسنج بمبى } \\
& \text { نكته - از گرماسنج بمبى براى محاسبه دقيق گرماى سوختن يك ماده استفاده مى كنند. } \\
& \text { كر ماسنج ليوانى } \\
& \text { اگر دو ليوان كه عايق گرما باشند . مثلاً ليوان هاى يك بار مصرف (هلى استاير نى), ادرون هم قرار داده و آن ها را به دربوشى از }
\end{aligned}
$$

اين گرماسنج شامل مقدار معينى آب يا محلول يک واكنش دهنده در يک ظرف عايق بندى شده است .يیش از انجام واكنش. دماى اولئة) (
 كرماى واكنش ها در فشار ثابت)

روش هاى غير مستقيم محاسبه كرماى واكنش ها

سؤال - چحرا به روش مستقيم نمى توان گرماى تمام واكنش ها را تعيين كرد ؟

ا-بسيارى از واكنش ها در شر ايط بسيار سختى انجام مى شوند .كه تأمين شر ايط بهينه آن وكنش بسيار سخت است. مانندمحاسبه گرماى واكنُ تهيه متان از واكنش مستقيم گَرافيت و كَاز هيدرورْن
 آزمايشگاه انجام داد. مانند محاسبه كرماى واكنش فتوسنتز انجام شده در بر گ سبز

قانون هنرى هس (قانون جمع پڭيرى كرماى واكنش ها)

اكر معادله يك واكنش را بتوان از جمع معادله دو يا چند واكنش ديگر به دست آورد. هH H آن نيز از جمع جبرى مقادير همان واكنش ها به دست آورد.
 آن واكنش انتخاب مى شود بستگى ندارد .يعنى اكر بتوان كرماى يك واكنش(محاسبه كنيم. به شر ط آن كه شر ايط انجام واكنش ها يكسان باشد . تقر يباً يكسان به دست مى آيد.

توضيح نكته بالا با دو مثال ساده

$\mathrm{NCO}_{Y}+4 \mathrm{H}_{Y} \mathrm{O}$

.

rmol H, O(1)
rmol H, O(I)

$r 20$
rvC
H_{1}
rmol H, O(1)
rv C
yr
 براساس آن تنظيم كنيم. Y-ا ץاكر واكنشى را وارونه كنيم. تنها علامت
 عددتقسيم مى شود.〒-هـر واكنش را فقط يك بار مى توان تغيير داد. هـآاگر ماده ای در واكنش اصلى باشد كه در بيش از يك فرعى ظاهر شده باشد . بهتر است ان را در آخر لحاظ كنيم.

مثال ا- با توجه به واكنش هاى زير: C هو واكنش (I) a) $\mathrm{O}_{r}(\mathrm{~g})+\mathrm{ClFF}^{\mathrm{Cl}}(\mathrm{g}) \rightarrow \mathrm{Cl}_{r} \mathrm{O}(\mathrm{g})+\mathrm{OF}_{r}(\mathrm{~g}) \quad \Delta \mathrm{H}=+1 я \wedge \mathrm{~kJ}$
b) $\mathrm{O}_{r}(\mathrm{~g})+\tau \mathrm{F}_{\mathrm{r}}(\mathrm{g}) \rightarrow r \mathrm{OF}_{r}(\mathrm{~g}) \quad \Delta \mathrm{H}=-\mu \psi \mathrm{kJ}$
c) $\mathrm{rClF}_{r}(\mathrm{l})+\mathrm{rO}_{r}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{r} \mathrm{O}(\mathrm{g})+\mathrm{rOF}_{r}(\mathrm{~g}) \quad \Delta \mathrm{H}=+\mu q ヶ \mathrm{~kJ}$

$$
\mathrm{Fr}(\mathrm{~g})+\mathrm{ClF}(\mathrm{~g}) \rightarrow \mathrm{ClFr}(\mathrm{~g}) \quad \Delta H_{*}=\Delta H_{\uparrow}+\Delta H_{+}+\Delta H_{r}=\Delta F-r r-19 \gamma=-1 r \Delta k J
$$

مثال

$$
\begin{aligned}
& r \mathrm{~N}_{r} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{O}_{r}(\mathrm{~g})+r \mathrm{~N}_{r}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{aKJ} \\
& \mathrm{~N}_{r}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow r \mathrm{NO}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{bKJ} \\
& r \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow r \mathrm{NO}_{r}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{cKJ}
\end{aligned}
$$

 ضريب آن بايد يک باشد سس تنها ضر ايب واكنش اول را بر r بتقسیم مى كنيم.
 NO واكنش دوم بدون تغيير باقى مى ماند.

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow r \mathrm{NO}(\mathrm{~g}) \quad \Delta \mathrm{H}=\frac{\mathrm{a}}{r}+\mathrm{b}-\frac{\mathrm{c}}{r}=\frac{\mathrm{a}-\mathrm{c}+\mathrm{r} \mathrm{~b}}{r}
$$

$$
\begin{aligned}
& r \mathrm{~N}_{T} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{O}_{r}(\mathrm{~g})+\mathrm{r}_{r}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{aKJ} \xrightarrow{x_{r}} \mathrm{~N}_{T} \mathrm{O}(\mathrm{~g}) \rightarrow \underset{r}{\frac{1}{-}} \mathrm{O}_{r}(\mathrm{~g})+\mathrm{N}_{r}(\mathrm{~g}), \Delta \mathrm{H}=\left(\mathrm{a} \times \frac{1}{r}\right) \mathrm{KJ} \\
& \mathrm{~N}_{r}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow r \mathrm{NO}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{bKJ} \rightarrow \mathrm{~N}_{r}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow r \mathrm{NO}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{bKJ} \\
& r \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{rNO}_{r}(\mathrm{~g}), \Delta \mathrm{H}=\mathrm{cKJ} \xrightarrow{-\mathrm{s} / \mathrm{s}} \mathrm{NO}(\mathrm{~g})+\frac{1}{r} \mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{NO}_{r}(\mathrm{~g}), \Delta \mathrm{H}=-\left(\mathrm{c} \times \frac{1}{r}\right) \mathrm{KJ}
\end{aligned}
$$

a) $\mathrm{P}_{\psi}(\mathrm{s})+\varphi \mathrm{Cl}_{r}(\mathrm{~g}) \rightarrow \psi \mathrm{PCl}_{r}(\mathrm{~g}), \Delta \mathrm{H}=-11 \uparrow \wedge \mathrm{~kJ}$
b) $\mathrm{PCl}_{\Delta}(\mathrm{g}) \rightarrow \mathrm{PCl}_{r}(\mathrm{~g})+\mathrm{Cl}_{\Gamma}(\mathrm{g}) \quad \Delta \mathrm{H}=+11 \varepsilon \mathrm{~kJ}$
ب- واكنش گرماده است يا گرماگِر ؟ حر ا؟
ج- نمودار „آنتاللى - زمانه) را براى آن رسم كنيد.

د-محاسبه كنيد به ازاى مصرف هر يک گرم فسفر. حند كيلو زول گرمادادو ستد مى شود؟؟ (P=rl g.mol

سؤال $\mathrm{SiO}_{r}(\mathrm{~s})+r \mathrm{C}(\mathrm{s}, \mathrm{G})+r \mathrm{Cl}_{r}(\mathrm{~g})+r \mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Si}(\mathrm{s})+r \mathrm{MgCl}_{r}(\mathrm{~s})+r \mathrm{CO}(\mathrm{g})$ اين واكنش را با استفاده از داده هاى زير حساب كنيد.

1) $\mathrm{SiO}_{4}(\mathrm{~s})+r \mathrm{C}(\mathrm{s}, \mathrm{G}) \rightarrow \mathrm{Si}(\mathrm{s})+r \mathrm{CO}(\mathrm{g})$ $\Delta H_{=}=+c q \cdot k J$
$r) \mathrm{SiCl}_{\psi}(\mathrm{g}) \rightarrow \mathrm{Si}(\mathrm{s})+\mathrm{rCl}_{\psi}(\mathrm{g})$
$r) \mathrm{SiCl}_{\leftarrow}(\mathrm{g})+\mathrm{MMg}(\mathrm{s}) \rightarrow r \mathrm{MgCl}_{r}(\mathrm{~s})+\mathrm{Si}(\mathrm{s})$
$\Delta \mathrm{H}_{+}=+\varsigma \Delta \vee \mathrm{kJ}$
$\Delta \mathrm{H}_{r}=+9 r \Delta \mathrm{~kJ}$

سؤال

$$
\mathrm{C}+\mathrm{H}+(\mathrm{g})+\mathrm{VOr}(\mathrm{~g}) \longrightarrow \mathrm{COH}(\mathrm{~g})+\stackrel{\mathrm{H}}{ }+\mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=?
$$

$$
\begin{aligned}
& \text { 1) } \mathrm{CrH}+(\mathrm{g})+\mathrm{rOr}(\mathrm{~g}) \longrightarrow r \mathrm{CO}(\mathrm{~g})+\mathrm{rH}+\mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}=- \text { rrrvk. } J \\
& r) \mathrm{C} \cdot \mathrm{H} \cdot(\mathrm{~g})+\mathrm{H} \cdot(\mathrm{~g}) \longrightarrow \mathrm{C} \cdot \mathrm{H}_{*}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{r}}=-1 \mathrm{r}_{\mathrm{r}} \mathrm{k} . \mathrm{J} \\
& r) \mathrm{rH}_{-}(\mathrm{g})+\mathrm{Or}(\mathrm{~g}) \longrightarrow \mathrm{rH} \cdot \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{r}}=-\uparrow \text { ^の } / \text { / } \mathrm{kJ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) }+\mathrm{H} *(\mathrm{~g})+\mathrm{rO}+(\mathrm{g}) \longrightarrow+\mathrm{H}+\mathrm{O}(\mathrm{I}) \\
& \Delta H_{1}=-11 \mathrm{Fk} \mathrm{~kJ} \\
& \text { r) } \mathrm{Cr} \cdot \mathrm{H} *(\mathrm{~g})+\mathrm{rOr}(\mathrm{~g}) \longrightarrow r \mathrm{COr}(\mathrm{~g})+r \mathrm{H} \cdot \mathrm{O}(1) \\
& \mathrm{r}) \mathrm{C}+\mathrm{H}_{4}(\mathrm{~g})+\Delta \mathrm{Or}(\mathrm{~g}) \longrightarrow \mathrm{COO}(\mathrm{~g})+\uparrow \mathrm{H}_{-\mathrm{O}(\mathrm{I})} \\
& +\mathrm{C}+\mathrm{H}_{*}(\mathrm{~g})+\mathrm{rH}+(\mathrm{g}) \longrightarrow \mathrm{C}+\mathrm{H}_{4}(\mathrm{~g}) \\
& \Delta H_{r}=- \text { lary k.J } \\
& \Delta H_{*} \text {. }
\end{aligned}
$$

سؤاله - دى بوران(BY) يكى هيدريد بور بسيار واكنش پذير است كه مى تواند با اكسيزن هوا بسوزد: به كمى آنتالیى واكنش هاى داده شده . آنتالیى واكنش داخل كادر را محاسبه كنيد.

$\mathrm{rB}(\mathrm{s})+\mathrm{rH}_{\mathrm{r}}(\mathrm{g}) \longrightarrow \mathrm{Br} \mathrm{H}^{*}(\mathrm{~g})$	$\Delta \mathrm{H}=$?

$$
\begin{aligned}
& \text { 1) } \mathrm{rB}(\mathrm{~s})+\frac{r}{r} \mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{B}_{+} \mathrm{O}_{r}(\mathrm{~s}) \\
& \Delta H=-I r v r k J \\
& \mathrm{r}^{2} \mathrm{~B}_{4} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{rO}_{4}(\mathrm{~g}) \rightarrow \mathrm{B}_{4} \mathrm{O}_{-}(\mathrm{s})+\mathrm{rH}_{4} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{,}=-r \cdot r \Delta k J \\
& \left.{ }^{r}\right) \mathrm{H}_{.}(\mathrm{g})+\underset{r_{r}}{\frac{1}{\mathrm{O}}} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{4} \mathrm{O}(\mathrm{l}) \\
& \Delta H_{r}=-r \wedge я k J \\
& \text { f) } \mathrm{H}_{+} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{+} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{t}=4 \mu \mathrm{~kJ}
\end{aligned}
$$

سؤال ¢- با توجه به مقدار آنتالیى واكنش هاى ba ، با نوشتن دليل آنتالِی ساير واكنش ها را تعيين كنيد.
a) $\mathrm{rC}(\mathrm{s})+\mathrm{rOr}(\mathrm{g}) \longrightarrow \mathrm{rCOr}(\mathrm{g})$
b) $\mathrm{rCO}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{rCO+}(\mathrm{~g})$
c) $\mathrm{rCOr}(\mathrm{g}) \longrightarrow \mathrm{rCO}(\mathrm{g})+\mathrm{O}_{\leftarrow}(\mathrm{g})$
d) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{+}(\mathrm{g}) \longrightarrow \mathrm{CO+}(\mathrm{~g})$
e) $\mathrm{rC}(\mathrm{s})+\mathrm{O}+(\mathrm{g}) \longrightarrow \mathrm{rCO}(\mathrm{g})$
$\Delta H=-v \mu \mu \mathrm{~kJ}$
$\Delta H=-\Delta 59 \mathrm{~kJ}$
$\Delta H=$? kJ
$\Delta \mathrm{H}=$? k J
$\Delta H_{s}=$? kJ

هيدرورن هر اكسيد $\mathrm{H}_{\boldsymbol{\nu}} \mathrm{O}_{\boldsymbol{\mu}}(\mathrm{aq})$

1-نام تجارى آن آب اكسيرّنه است.
ץ-محلول رقيق آن در آب به عنوان لكه بر (لكه هاى خون . قهوه و...) . اكسيده كننده و ضد عفونى كننده مور استفاده قرار مى گيرد. ץ- از واكنش تجزيه آن به عنوان منبع توليد اكسيرن در آزمايشگاه . استفاده مى شود.千 \&- واكنش تجزيه آن از جمله واكنش هاى گرماده مى باشد.(اغلب واكنش هاى تجزيه گرماگيرند.) $\mathrm{rH}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}(\mathrm{aq}) \rightarrow \mathrm{rH}_{\mathrm{r}} \mathrm{O}(\mathrm{l})+\mathrm{O}_{\mathrm{r}}(\mathrm{g})+\mathrm{Q}$

ه- تهيه اين ماده به ويزه در آزمايشگاه از واكنش مستقيم دو كاز هيدرورْن و اكسيزَن امكان پذير نيست. پس گرماى اين واكنش نيز از روش غيرمستقيم و از واكنش هاى زير به دست مى آورند.

1) $\mathrm{H}_{+}(\mathrm{g})+\frac{1}{r} \mathrm{O}_{r}(\mathrm{~g}) \rightarrow \mathrm{H}_{r} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}_{\mathrm{r}}=-r \wedge \wedge \mathrm{~kJ} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{r} \mathrm{O},(\mathrm{g}) \rightarrow \mathrm{MO}(\mathrm{l}) \cdot \Delta \mathrm{H}=-r \wedge \wedge \mathrm{k} \cdot \mathrm{J}$
$\mathrm{r}^{2} \mathrm{rH}_{+} \mathrm{O},(1) \rightarrow \mathrm{rH}_{+} \mathrm{O}(1)+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{+}=-199 \mathrm{~kJ} \longrightarrow \mathrm{M}\left(\mathrm{O}(1)+\frac{1}{r} \mathrm{O},(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O},(1) \cdot \Delta \mathrm{H}_{2}=+9 \wedge \mathrm{~kJ}\right.$
$\mathrm{H} .(\mathrm{g})+\mathrm{O} .(\mathrm{g}) \rightarrow \mathrm{H} . \mathrm{O},(\mathrm{l}) \quad \Delta \mathrm{H}=+9 \wedge-r \wedge \varsigma=-\mid \wedge \wedge \mathrm{kJ}$

محاسبه آنتالپِ واكنش ها با استفاده از ميانكين آنتالپی پیوند مواد

 مثبت است)و وقتى كه در فر اورده ها پيوند تشكيل شود كرما آزاد مى شود(يعنى DH منفى است). جمع جبرى اين دو گرما . آنتاللىى واكنش است.

با مشخص كردن اين كه كدام پيوند ها در واكنش دهنده ها شكسته مى شود و كدام پيوند ها در فر اورده (ها) تشكيل مى شود. مى توان كرماى يک واكنش شيميایى را محاسبه كرد.

 صورت گاز در نظر بگيريم . در آن صورت مى توان از قانون هس براى محاسبه كرماى واكنش استفاده كرد.

> rrяkJ $\mathrm{H}-\mathrm{H}(g)+\mathrm{Cl}-\mathrm{Cl}(g) \rightarrow r \mathrm{H}-\mathrm{Cl}(g)$

بِيوند هايیى كه شكسته مى شوند
بيوند هايیى كه تشكيل مى شوند
$\Delta H_{.}=(r \times r r ı)=-\Lambda s r k J$
انرثى آزاد شده هنگام تشكيل پيوند در فراورده ها
از جمع اين دو انر زی . به كرماى واكنش مى توان رسيد.
,

$$
\text { مثال دوم- } \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{\uparrow}(\mathrm{g}) \rightarrow \mathrm{CO}_{\uparrow}(\mathrm{g})+\uparrow \mathrm{H}_{\uparrow} \mathrm{O}(\mathrm{~g}) . \text {. }
$$

 للزم جهت شكستن پيوندها و انر (آى آزاد شده هنكام تشكيل پيوندها به قرار زير است.

تفي, آنتالـى برایى بوندهایى شكستد شـده:

$$
\begin{aligned}
& \uparrow(\mathrm{C}-\mathrm{H})=(\uparrow \mathrm{mol}) \times\left(\uparrow \upharpoonleft \uparrow k J . \mathrm{mol}^{-1}\right)=\mid \varphi \uparrow \wedge k J \\
& \mathrm{r}(\mathrm{O}=\mathrm{O})=(\mathrm{rmol}) \times\left(499 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)=49 \mathrm{rkJ} \\
& \Delta \mathrm{H}_{2}=Y \subset \uparrow \cdot \mathrm{CJ}
\end{aligned}
$$

تغير, آنتالمى براءى يوندهای تشكيل شده:
$\zeta(\mathrm{C}=\mathrm{O})=\left(\mathrm{rmol}_{\mathrm{m}}\right) \times\left(\mathrm{N}^{\circ} \cdot \Delta \mathrm{kJ} . \mathrm{mol}^{-1}\right)=|9| \cdot \mathrm{kJ}$

رابطه محاسبه كر ماى واكنش ها با استفاده از آنتالیى پيوند ها

نكاتى در مورد استفاده از آنتالپی پيوند ها در محاسبه كرماى واكنش ها

1－تمام مواد بايد به صورت گازى شكل باشند．（زير ا گُر حالت مواد جامد و يا مايع باشند ．مقدارى از انرثيى كه صرف تبديل حالت مى شود به حساب انر（یى پيوند مى رود．） Y－هر چه مولكول هاى مواد شر كت كننده در واكنش ساده تر باشند．آنتالبى محاسبه شده بر ای واكنش با داده هاى تجربى هم
 سِ گرماى محاسبه شده اغلب در مقايسه با داده هاى تجربى تفاوت آشكار نشان مى دهد．

تذكر－در محاسبه گرماى واكنش ها با استفاده از آنتالیى پيوند ها．دانستن ساختار لوويس مواد شر كت كننده در واكنش ضرورى سؤال ا-آنتالبى هر يك از واكنش هاى زير را با استفاده از آنتالبى پيوند به دست آورده و نمودار تغيير آنتاللى را براى آن ها رسم
(الف $\mathrm{CH}_{\digamma}(\mathrm{g})+\mathrm{rCl}_{\uparrow}(\mathrm{g}) \rightarrow \mathrm{CHCl}_{\mu}(\mathrm{g})+{ }_{\mathrm{r}} \mathrm{HCl}(\mathrm{g})$

ب)
$\underset{r}{ }) \mathrm{N} \equiv \mathrm{N}(\mathrm{g})+\mu \mathrm{H}_{\curlyvee}(\mathrm{g}) \rightarrow r \mathrm{NH}_{r}(\mathrm{~g})$

د) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g})+\mathrm{r} \mathrm{H}-\mathrm{H}(\mathrm{g}) \rightarrow \mathrm{C}_{\curlyvee} \mathrm{H}_{\varsigma}(\mathrm{g})$
سؤال r-با توجه به واكنش داده شده و آنتالیى پيوند ها . آنتالیى پيوند O-F , ا به دست آوريد.
$\Delta \wedge \mathrm{kJ}+\mathrm{rF}_{\mathrm{r}}(\mathrm{g})+\mathrm{O}_{\mathrm{r}}(\mathrm{g}) \rightarrow r \mathrm{OF}_{r}(\mathrm{~g})$

سؤال $\mathrm{B}_{+} \mathrm{H}_{s}(\mathrm{~g})+\mathrm{rO}_{4}(\mathrm{~g}) \rightarrow \mathrm{B}_{+} \mathrm{O}_{+}(\mathrm{s})+\mathrm{rH}_{+} \mathrm{O}(\mathrm{g})$

『 همه خوراكى ها وغذا هاى مختلف تاريخ مصرف دارند . كه مدت زمان نگُهدارى سالم آن ها را نشان مى دهد.

 مرطوب است .نگهدارى اغلب مواد غذايى در سرد خانه ها تأييدى بر اين تجر به است .در واقع عوامل محيطى مانند رطوبت. اكسيرّن. نور و دما در چگونگى و زمان نُكهدارى غذا مؤثرند.

 اكسيرّن مى توان زمان نگَهدارى مواد غذايى را ال افز ايش داد داد. च تهيةٔ كنسرو. بسته بندى نوين. افزودن نكَهدارنده ها و... استفاده شود.

سؤال - حرا براى نُكهدارى سالم برخى خور اكى ها . آنها را با خالى كردن هواى درون ظرف بسته بندى مى كنند؟

آهنى(سرعت) واكنش

تهيه و توليد سريع تر يا كندتر يک فر اوردة صنعتى. دارويى يا غذايى بر كيفيت و زمان ماند كارى آن نقش تعيين كننده ایى دارد .

زمان انجام واكنش ها متفاوت است به طورى كه گُتره ای از حندصدم ثانيه تا حندسده را دربرمى گير دبه عنوان نمونه : 1- انفجار . واكنش شيميايى بسيار سر يعى است كه در آن از معدار كمى مادة منفجر شونده به حالت جامد يا مايع، حجم زيادى از كازهاى داغ توليد مى شود.

Y- تشَكيل رسوب سفيد رنگَ نقره كلر يد از واكنش ميان دو محلول بى رنگ محلول سديم كلريد و نقره نيترات يك واكنش سر يع است.

$$
\mathrm{AgNO}_{r}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{r}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

r r- اشياى آهنى در هواى مرطوب به كندى زنگ مى زنند زنگار توليد شده در اين واكنش ترد و شكننده است و فرو مى ريزد. $r \mathrm{Fe}(\mathrm{s})+\mu \mathrm{O}_{r}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{rFe}_{r} \mathrm{O}_{r}(\mathrm{~s})$
 بسيار كند رخ مى دهد.

تذكر - شكل هاى زير نيز زمان هاى متفاوت در انجام شدن دارند كه مقايسه كيفى آن ها بسيار ساده است.

تا اينجا در مورد واكنشهاى گرماگیر و گرماده و حگونگى تعيين گرماى آنها آشنا شديد للزم است بدانيد كه واكنش ها سرعت انجام شدن يكسانى ندارند آنحه در مطالب بعدى خواهيد خواند .مقايسه واكنش هاى مختلف از نظر سرعت و عواملى كه روى سرع ست آن آن ها مؤثر است را بيان مى كند.

شاخه ای از شيمى است كه به بر رسى شر ايط و حگونگى انجام واكنش هاى شيميايى. سرعت آن ها و عوامل مؤثر بر سرعت آن ها مى ريردازد.

 خوردگى وسايل آهنى . توليد آللاينده ها. زرد و يوسيده شدن كاغذ كتاب زيان آور و ناخواسته مى باشند.
 سرعت بخشيدن به واكنش هايى هستند كه بتوانند فر اورده هايى گوناگون با صرفئ اقتصادى توليد كنند.كه براى دستيابى به حنين اهدافى بايد از سينتيك شيميايى كمى كرفت.

پیشر فت واكنش -ـاهش مقدار واكنش دهنده ها و افزايش مقدار فر اوردها , ا ـ پیشرفت واكنش مى نامند. سرعت واكنش - ميز ان بِشر فت واكنُ درواحد زمان مى باشد.

نكته - هر اندازه پيشرفت در واحد زمان بيش تر باشد . يعنى واكنش سريع تربوده و در مدت زمان كوتاهى صورت گرفته است. سرعت متو سط مصرف و توليد مواد شركت كننده در واكنش مى دانيد كه در يك واكنش شیميايى با كذشت زمان. واكنش دهنده ها مصرف و فر اورده ها توليد مى شوند. براى نمونه. به واكنش تيغة روى با محلول محتوى r. /. مول مس(II) سولفات طبق شكل زير توجه كنيد.

 بيانگر آن است كه مقدار يون هاى Cur (aq) كاهش يافته و جرم Cu(s توليد شده. افزايش مى يابد .اين واكنش تا جايى بيش

سر عت مصرف يا تو ليد يى مادةُ شر كت كننده در واكنش در گسترة زمانى قابل اندازه گيرى را سرعت متوسط آن ماده مى گويند و
 شدن r •/ • مول يون مس (II) در مدت • r دقيقه بر حسب مول بر دقيقه بصورت زير است.

$$
\mathrm{R}=\frac{\cdot / \cdot r \mathrm{~mol}}{r \cdot \min }=\cdot / \cdots \cdot \mathrm{mol} \cdot \mathrm{~min}^{-1}
$$

نكته| - سرعت كميت تجربى است وتجر به نشان مى دهد كه سرعت متوسط مصرف يا توليد موادشر كت كننده را مى توان با اندازه كيرى كميت هايى مانند جرم. حجم. فشار و ... تعيين كرد.

نكته Y- سرعت مصرف يا توليد يک ماده در واكنش ها. در زمان هاى مختلف متفاوت است . به هين دليل از سرعت متوسط استفاده

A \rightarrow B معادله سرعت متو سط مصرف ماده A و توليد ماده B در واكنش فرضى

| اسرعت متوسط(آهنگ) مصرف ماده A
 تغييرات زمان برابر , ماده A عبارتست از:
$\bar{R}_{\mathrm{A}}=-\frac{\mathrm{n}_{r(\mathrm{~A})}-\mathrm{n}_{\backslash(\mathrm{A})}}{\mathrm{t}_{r}-\mathrm{t}_{\Gamma}}=-\frac{\Delta \mathrm{n}_{\mathrm{A}}}{\Delta \mathrm{t}}$
تذكر - سرعت يک كميت مثبت مى باشد. از طرفى حون •> nه سِ با وارد كردن منفى در رابطه . همواره مقدار سرعت مثبت خواهد

درجريان توليد يك ماده حون مقدار آن در حال افزايش است سپ

$$
\overline{\mathrm{R}}_{\mathrm{B}}=+\frac{\mathrm{n}_{r(\mathrm{~B})}-\mathrm{n}_{\backslash(\mathrm{B})}}{\mathrm{t}_{r}-\mathrm{t}_{1}}=+\frac{\Delta \mathrm{n}_{\mathrm{B}}}{\Delta \mathrm{t}}
$$

سؤال ا－＾／• مول ماده X در ثانيه دهم سپ از شروع واكنش موجود مى باشد و در ثانيه بيستم مقدار آن به Y • مول مى رسد ． الف－اين ماده واكنش دهنده است يا فراورده ؟ چֶر ا؟ واكنش دهنده ．زيرا مقدار آن در حال كاهش است．
＂じ

 ，$\Delta[A]$ تغيير ات غلظت مولى مادهA مى باشد．）

$$
\overline{\mathrm{R}}_{\mathrm{A}}=-\frac{[\mathrm{A}]_{r}-[\mathrm{A}]_{\mathrm{r}}}{\mathrm{t}_{r}-\mathrm{t}_{r}}=-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}} \quad \overline{\mathrm{R}}_{\mathrm{B}}=+\frac{[\mathrm{B}]_{r}-[\mathrm{B}]}{\mathrm{t}_{r}-\mathrm{t}_{5}}=+\frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}}
$$

سؤال 「－محلول roولار هيدروكلريـ اسيد（HCl）موجود است اگر بعد از كذشت ．．ا ثانيه بر طبق معادله واكنش ． $\mathrm{Zn}(\mathrm{s})+$ rHCl（aq）$\rightarrow \mathrm{ZnCl},(\mathrm{aq})+\mathrm{H} .(\mathrm{g})$ ثانيه محاسبه كنيد．

$$
\begin{aligned}
& {[\mathrm{HCl}]=\cdot / \Delta \mathrm{mol} . \mathrm{L} \cdot \quad[\mathrm{HCl}]=r m o l . \mathrm{L} \Rightarrow \Delta[\mathrm{HCl}]=\cdot / \Delta-r=-1 / \Delta \mathrm{mol} . \mathrm{L}} \\
& \mathrm{t}=\cdot \mathrm{s} \quad . \mathrm{t}=1 \cdot \mathrm{~s} \quad \Delta \mathrm{t}=1 \cdots-\cdot=1 \cdots \mathrm{~s} \\
& \overline{\mathrm{R}}_{\mathrm{HII}}=-\frac{\Delta[\mathrm{HCl}]}{\Delta \mathrm{t}}=\frac{(-1 / \Delta) \mathrm{mol} . \mathrm{L}}{1 \cdots \mathrm{~s}}=\cdots / 2 \mathrm{~mol} \cdot \mathrm{~L} \mathrm{~s}
\end{aligned}
$$

نكته ا- سرعت واكنش در آغاز زياد است و با كذشت زمان و كاهش غلظت واكنش دهنده ها . سرعت واكنش نيز كم مى شود. نكته Y- سرعت توليد فر اورده ها به سرعت مصرف واكنش دهنده ها وابسته است .و حون با كذشت زمان سرعت مصرف واكنش دهنده ها كاهش مى يابد .سپ سرعت تولِد فراورده ها و سر انجام سرعت واكنش نيز كاهش مى يابد.

سؤال می تواند باشد؟ حر ا؟ ()

سؤال F مورد آن ها درست است؟ حر ا؟؟
R. $>\mathrm{R}>\mathrm{R}_{\mathrm{F}}$,
$R_{r}>R_{\sim}>R_{-}$-
$R>R,>R_{+}$
R.

الف- كرم بر دقيقه

ب-مول بر ثانيه

ج- مولار بر دقيقه

د-مولار بر ثانيه

ج- با مقايسه سرعت متوسط قسمت» الف و ب") در مورد سرعت متوسط مصرف ماده A به چه نتيجه ای مى توان رسيد. آيا اين تعميم در مورد بقيه مواد نيز درست است . توضيح دهيد.

ا-نموعت متو سط و شيب نمودار مول - زمان - زمان مواد واكنش دهنده

در يک واكنش حون با كذشت زمان از مقدار واكنش دهنده ها كاسته مى شود سپ نمودار آن ها نزولى با شيب منفى است ـ ودر يک بازه زمانى معين قدر مطلق آن سرعت متوسط مصرف واكنش دهنده ها را نشان مى دهد.

AB سرعت متوسط sar فو واكنس دهنده

Y-نمودار مول - زمان فراورده ها

در يك واكنش جون با كذشت زمان بر مقدار فراور ده ها افزوده مى شود سِ نمودار آن صعودى با شُب مثّبت است ـ وسيب آن در هر بازه زمانى معين سرعت متوسط توليد فراورده را را نشان مى دهد.

نكته - درابتدا واكشُ جون سرعت زياد است . شيب نمودار نيزّ بيش تر است و با كذشت زمان شيب آن كاهش يافته به صفر مى رسد.كه در نمودار واكنش دهنده ها مماس بر محور زمان قرار مى گيرد و براى فر اور ده ها به صورت يك خط افقى در مى آيد. نمودار مول - زمان در يك واكنش موازنه شده

『 \downarrow مى باشند . نمودار صعودى است.
$-$
『 هر ماده ای كه ضريب استو كيومترى بزرگ ترى داشته باشد . شيب نمودار آن بيش تر وماده ای كه ضريب استو كيومترى كوچکى ترى دارد. شيب نمودار آن كم تر است.
لا در پايان واكنش نمودار مواد از حالت منحنى به صورت خط افقى تبديل مى شود. سؤال ا -نمودار مول - زمان واكنشى به صورت زير است كدام عبارت زير درست و كدام نادرست است الف ـماده A فراورده و ماده B واكنش دهنده است. ب- در معادله موازنه شده اين واكنش ضريب استو كيومترى ماده B از ضريب استوكيومترى ماده A بزرگگ تر است.

سؤال r(غلظت اوليه هر يـَ از واكنش دهنده ها رK مولار در نظر بگيريد.)
جكونه مى توانيم از روى تغيرر غلظت مواد شركت كننده در يك واكنش به ععادلد موازنه آن واكنش بر سيم؟ 1-موادى كه غلظت آن ها در حال كاهش است . مواد واكنش دهنده بوده و موادى كه غلظت آن ها در حال افزايش است فراورده واكنش قرار مى دهيم. ץ- بی بازه زمانى را مشخص كرده. ودر آن بازه تغيير غلظت هر يك از مواد را مشخص مى كنيم. ץ-تغيير غلظت هاى به دست آمده را بر كوحكترين آن ها تقسيم مى كنيم . اگر به اعداد غير صحيح رسيديم. بايد همه را در كوحک ترين عدد ممكن ضرب كرده تا به اعداد صحيح تبديل شوند. سؤال

زمان(دقيقه)	-	1.	P.
mol.L ${ }^{-1}$ [$]$	-/f	-/r9	-/rF
mol.L- [B]	-19	- / DF	- / Q $^{\prime}$
mol.L [C]	-	$\cdot / \cdot 1$	- / Ir

سؤال F- با توجه نمودار زير. معادله موازنه واكنش فرضى را بنويسيد.

بين سرعت متو سط مواد در يك واكنش موازنه شده چֶه رابطه ای و جود دارد؟

1-در يك واكنش موازنه شده سرعت متوسط مصرف يا توليد مواد با ضر ايب استو كيومترى آن ها متناسب است. به عنوان نمونه به مثال زير دقت كنيد

$$
r \mathrm{Al}+\varphi \mathrm{HCl} \rightarrow r \mathrm{AlCl}_{r}+r \mathrm{H}_{r} \quad \frac{\mathrm{R}_{\mathrm{Al}}}{\mathrm{R}_{\mathrm{HCl}}}=\frac{1}{r} \quad \frac{\mathrm{R}_{\mathrm{Hr}}}{\mathrm{R}_{\mathrm{Al}}}=\frac{r}{r}
$$

「-موادى كه در يی واكنش ضر ايب استوكيومترى برابر دارند . سرعت متوسط نسبت به آنها نيز يكسان است. مثلاً در واكنش بال سرعت متوسط مصرف Al و توليد AlCl ${ }^{\text {Al }}$ برابرند.

「-هر ماده ای كه ضريب استو يومترى بزر گی ترى دارد . سرعت متوسط نسبت به آن نيز بيش تر و برعكس براى ماده با ضريب كوحِى تر سرعت متوسط نسبت به آن كم تر مى باشد. به عنوان نمونه سرعت متوسط مصرف HCl از همه بيش تر و سرعت متوسط نسبت به AlClr و Al و از بقيه كم تر است.
 الف- سرعت متوسط مصرف Or Or بر حسب مول بر ثانيه به دست آوريد؟

$$
\frac{R_{O}}{R_{(O .}}=\frac{\Delta}{r} \rightarrow \frac{R_{0}}{\cdot / 4}=\frac{\Delta}{r} \rightarrow R_{O_{2}}=\frac{\Delta x \cdot / 4}{r}=. / 44 \mathrm{~mol} . \mathrm{s}
$$

ب- سرعت متوسط توليد HrO , بر حسب مول بر دقيقه محاسبه كنيد.

$$
\begin{aligned}
& \frac{R_{11, \mathrm{O}}}{R_{\mathrm{CO},+}}=\frac{\psi}{r} \rightarrow \frac{\mathrm{R}_{\mathrm{H} . \mathrm{O}}}{\cdot / \tau}=\frac{\psi}{r} \rightarrow \mathrm{R}_{\mathrm{HI,O}}=\frac{\psi \times \cdot / \psi}{r}=\cdot / \Delta r \mathrm{~mol} . \mathrm{s} \\
& \mathrm{R}_{\mathrm{H}, \mathrm{O}}=\cdot / \Delta r \frac{\mathrm{~mol}}{\mathrm{~s}} \times \frac{\& \cdot \mathrm{~s}}{\mathrm{~min}}=r r \frac{\mathrm{~mol}}{\mathrm{~min}}
\end{aligned}
$$

ج- محاسبه كنيد به طور متوسط در شر ايط استانداردو در هر ثانيه چند ليتر گاز كربن دى اكسيد توليد مى شود؟

$$
? \mathrm{LCO}_{r}=\cdot / r \mu \mathrm{molCO}_{r} \times \frac{r r / r \mathrm{LCO}_{r}}{1 \mathrm{molCO}_{r}}=v / r q r \mathrm{LCO}_{r}
$$

د- آيا در اين واكنش موادى وجود دارند كه سرعت متوسط نسبت به آن ها برابر باشد؟ توضيح دهيد.خير زيرا مواد با ضريب استو كيومترى بر ابر وجود ندارد.

سؤال ا-واكنش تجزيه - 1 دقيقه r/• مول ماده A تجزيه شود. الف - سرعت متوسط مصرف ماده A را بر حسب مول بر دقيقه و مول بر ثانيه محاسبه كنيد.
ب--سرعت متوسط توليد كاز C C بر حسب ميلى ليتر بر ثانيه در شر ايط STP به دست آوريد؟

ج- اگر جرم مولى ماده B برابر بی گُرم بر مول باشد . سرعت متوسط نسبت به توليد اين ماده را برحسب گرم بر دقيقه محاسبه
 كربن دى اكسيد در شر ايط STP تشكيل شود .

الف - سرعت متوسط توليد كربن دى اكسيد در اين واكنش . حند مول بر دقيقه است؟

ب- سرعت متوسط نسبت به مصرف گاز اكسيرٌن بر حسب مول بر ثانيه چند است؟

سؤال r - اكر . $\left(\mathrm{N}=1 \uparrow . \mathrm{H}=1: \mathrm{g} . \mathrm{mol}^{-1}\right)$. تجز يه شود $\mathrm{rNH}(\mathrm{g}) \rightarrow \mathrm{N} .(\mathrm{g})+\mathrm{rH}$ (g) الف-سرعت تشكيل كازهيدرورْن رادر اين واكنش بر حسب مول بر دقيقه محاسبه كنيد؟

ب- سرعت متوسط توليد كاز نيترورْن در اين واكنش را بر حسب ليتر بر ثانيه محاسبه كنيد؟(حجم مولى كاز ها را در شر ايط آزمايش ب.

$$
\begin{aligned}
& \text { سؤال } \\
& \text { الف- سرعت متوسط نسبت به مصرف يا توليد كدام ماده بيش تر است ؟ حر ا؟ } \\
& \text { ب-نسبت سرعت متوسط مصرف آب به سرعت متوسط توليد نيتروثن مونو اكسيد را به دست آوريد. }
\end{aligned}
$$

 'باشد

ب- محاسبه كنيد بعد از دقيقه + از شروع واكنش چند كرم از پتاسیم كلرات به طور كامل مصرف مى شود؟ $\left(\mathrm{K}=r q, \mathrm{Cl}=r \Delta / \Delta, \mathrm{O}=1 \varepsilon: \mathrm{g} . \mathrm{mol}^{-1}\right)$

ج-سرعت متوسط واكنش رابر حسب مول بر ثانيه حساب كنيد.

 ب-سرعت متوسط مصرف كاز هيدروزن را بر حسب مول بر ثانيه محاسبه كنيد.(حجم ظرف واكنش را ب ليتر فرض كنيد.)
 ثانيه 1 « گرم از آن باقى مانده باشد . سرعت متوسط تشكيل كاز اكسيرّن . بر حسب مول بر ثانيه حنداست؟ ($\mathrm{N}=1$ if $\mathrm{O}=14 \mathrm{~g} . \mathrm{mol}^{-1}$)

سؤال ل- رابطه سرعت متوسط واكنشى به صورت زير نوشته شده است . معادله موازنه شده اين واكنش را بنويسيد.

$$
\mathrm{R}=\frac{1}{r} \frac{\Delta \mathrm{nNO}_{r}}{\Delta \mathrm{t}}=\frac{1}{r} \frac{-\Delta \mathrm{nN}_{r} \mathrm{O}_{0}}{r \Delta \mathrm{t}}=\frac{\Delta \mathrm{nO}_{r}}{\Delta \mathrm{t}}
$$

 نشان مى دهد . با توجه به آن به سؤالات زير پاسخ دهيد. الف - واكنش در چچه زمانى متوقف شده است؟ چر ا؟

ب-سرعت متوسط توليد اين كاز را برحسب يكاهاى زير محاسبه كنيد.

1- مولار بر ثانيه
r-مول بر ثانيه(حجم ظرف واكنش , r . . . ميلى ليتر فرض كنيد.)
r-مول بر دقيقه

(H=) g. mol^{-1}) هرم بر دقيقه

- كلسيم كربنات در آب نامحلول است اما در هيدروكلريك اسيد . حل مى شود.
- با گذشت زمان و خروج گاز كربن دى اكسيد توليد شده . از جرم مخلوط واكنش كاسته مى شود.

$$
\mathrm{CaCO}_{+}(\mathrm{s})+r \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{+}(\mathrm{aq})+\mathrm{CO}_{\uparrow}(\mathrm{g})+\mathrm{H}_{+} \mathrm{O}(\mathrm{l})
$$

 شده است.

نكته - سولْورواسيد (HrSOr) و كربنيَ اسيد (HrCO) اسيد هاى دو ظرفيتى ضعيف مى باشند .كه بيش تر به واسطه نمك هايشان شهرت يافته اند. اين دو اسيد ناپايدارند و تاكنون به صورت خالص جدا نشده اند از اين رو بهتر است فرمول شيميايى آن ها را

سرعت متوسط واكنش (سرعت واكنش)

دريافتيد كه شيب نمودار مول - زمان براى هريى از شركت كننده ها در واكنُ متناسب با ضريب استوكيومترى آن است .به طورى
 بیششرفت واكنش در واحد زمان. از يكى مغهوم كاربردى به نام سرعت واكنش استفاده مى كنند.

سرعت واكنش

از تقسيم كردن سرعت متوسط توليد يا مصرف هر ماده به ضريب استو كيومترى آن ماده درمعادله موازنه شده واكنش به دست مى

$$
a A+b B \rightarrow c C+d D \quad \frac{R_{A}}{R_{B}}=\frac{a}{b}, \quad \frac{R_{c}}{R_{a}}=\frac{c}{a}
$$

يادآورى-برای واكنش موازنه شده: rNH به صورت زير نوشته مى شود.

$$
\mathrm{R}_{\mathrm{NH}_{+}}=-\frac{\Delta \mathrm{n}\left(\mathrm{NH}_{r}\right)}{\Delta \mathrm{t}} \quad, \quad \mathrm{R}_{\mathrm{N}}=+\frac{\Delta \mathrm{n}\left(\mathrm{~N}_{r}\right)}{\Delta \mathrm{t}} \quad, \quad \mathrm{R}_{\mathrm{H}_{+}}=+\frac{\Delta \mathrm{n}\left(\mathrm{H}_{r}\right)}{\Delta \mathrm{t}}
$$

حال براى به دست آوردن سرعت متوسط اين واكنش نيز مى توان رابطه زير را نوشت .

$$
\begin{aligned}
& \underset{\sim u c l}{\mathrm{R}}=-\frac{\Delta\left[\mathrm{NH}_{\mathrm{r}}\right]}{r \Delta \mathrm{t}}=+\frac{\Delta\left[\mathrm{N}_{\mathrm{r}}\right]}{1 \Delta \mathrm{t}}+\frac{\Delta\left[\mathrm{H}_{\mathrm{r}}\right]}{r \Delta \mathrm{t}}
\end{aligned}
$$

نكته - سرعت واكنش مستقل از نوع ماده شر كت كننده در واكنش است . يعنى نسبت به هر ماده موجوددر واكنش تعيين شود تفاوتى نمى كند. ومقدار يكسان خواهد بود.
 الف- سرعت متوسط مصرف كاز آمونياك را بر حسب مول بر دقيقه و مول بر ثانيه محاسبه كنيد؟ ب- سرعت متوسط واكنش را بر حسب مول بر دقيقه به دست آوريد.

سؤال - با عبارت درست و يا نادر ست پاسخ دهيد.

الف - اكر سرعت متوسط مصرف ماده ای r مول بر ثانيه باشد . يعنى در هر ثانيه به طور دقيق r مول از اين ماده مصرف مى شود.
 كتاب را مطالعه كرده اند. با اين اطلاعات مى توان كفت سرعت مطاعه دانش دوم از دانش آموز اول بيش تر است.

عوامل مؤثر بر سرعت واكنش ها

براى تغيير سرعت انجام واكنش ها (كاهش يا افزايش) مى توان عواملى مانند دما. غلظت. نوع مواد واكنش دهنده. كاتاليزَر و سطح تماس واكنش دهنده ها را تغيير داد.

سؤال| ا- هر يک از موارد زير نقش كدام عامل مؤثر بر سرعت واكنش ها را نشان مى دهد. توضيح دهيد.

ا--بر ای نكَهدارى طولنى مدت فراورده هاى گوشتى. آنها ,ا به حالت منجمد ذخيره مى كنند.「-بيمارانى كه مشكلات تنفسى دارند. در شر ايط اضطرارى نياز به تنغس از كچسول گاز اكسيرّن خالص دارند.

 ه- تراشه هاى چوب. سريع تر از تكه هاى چوب مى سوزند. ¢- حبَّ قند آغشته به خاك باغجه سريع تر و آسان تر مى سوزد.زيرا در خاك باغجهه كاتاليز گر مناسب وجود دارد. V- بار گاه ملكوتى امامان معصوم(ع)را با ورقه هاى ناز ك طلا تزيين مى كنند .با كذشت زمان. اين كُنبدها همحنان درخشان باقى مى مانند: درحالى كه طاق مسى مقبره́ حافظ(حافظيةُ شير از)با گذشت زمان سبزرنگ شده است. ^-فلز تاسيم به سرعت با آب واكنش مى دهد .ولى فلز آهن در حضور آب و اكسيرٌن هوا در دراز مدت خورده مى شود.

سؤال 「 + در هر يك از موارد زير با توجه به شكل. علت اختلاف در سرعت واكنش را توضيح دهيد.

الف)فلز هاى قليايى سديم و تِاسیم در شر ايط يكسان با آب سرد به شدت واكنش مى دهند |اما سرعت اين دو واكنش متفاوت است.

ب)شعلةً آتش. گرد آهن موجود در كسپول چینیى را داغ و سرخ مى كند: در حالى كه ياشيدن و پخش كردن كرد آهن بر روى شعله. سبب سوختن آن مى شود.

 اتاق به كندى واكنش مى دهد. اما با كرم شدن. محلول به سرعت بى رنگ مى شود.

ت)الياف آهن داغ و سرخ شده در هوا نمى سوزد. در حالى كه همان

ث)محلول هيدرورْن پر اكسيد در دماى اتاق به كندى تجزيه شده و كاز اكسيرَن توليد مى كند. در حالى كه افزودن دون دو قطره از از محلول

تذكر - قند موجود درجوانه گندم مالتوز نام دارد كه طبق واكنش زير به دو مولكول كلوكز تبديل مى شود.

$$
\mathrm{C}_{4} \mathrm{H}_{r \mathrm{r}} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{r} \mathrm{O}(\mathrm{l}) \rightarrow r \mathrm{C}_{\varphi} \mathrm{H}_{\langle r} \mathrm{O}_{\varphi}(\mathrm{aq})
$$

خوراكى هاى طبيعى رنكين، بازدارنده هايى مفيد و مؤثر

 هغذى ها هستند. است كه برخى از آنها به عنوان بازدارنده از انجام واكنش نامطلوب و ناخواسته به دليل حضور راديكال ها جلوگيرى مى كنند. تر كيب هايى كه در حفظ سلامت بافت ها و اندام دخالت دارند.و از پيرى زود رس و بيمارى سرطان جلو گيرى مى كنند.

هندوانه و گوجه فرنگى محتوى ليكوين بوده كه فعاليت راديكال ها را كاهش مى دهد. ليكوين يكى رنگدانه كاروتنوييدى به رنگ قرمز روشن است كه مسئول توليد رنگ قرمز در گوجه فرنگیى است. در بدن ما به دليل انجام واكنش هاى متنوع و يیحيده. راديكال هايى به وجود مى آيند كه اگر به وسيلة باز دارنده ها جذب نسُوند. مى توانند با انجام واكنش هاى سر يع به بافت هاى بدن آسيب بر سانند .با اين توصيف مصرف خوراكى هاى محتوى بازدارنده ها سبب خواهد شد كه راديكال ها به دام بيڤتند تا با كاهش مقدار آنها از سرعت واكنش هاى ناخواسته كاسته شود.

تذكر - گازهاى NO NO NO كه در هواى آلوده يافت مى شوند . به دليل داشتن الكترون جفت نشده روى اتم نيترورّن آن ها . راديكال مى باشند.

غذا، پֶساند و ردپای آن الا علاوه بر كربن دى اكسيد و آب. غذا نيز دو جهره آشكار و پنيان دارد.
 تبديل مى شود و يا از بين مى رود .اين درحالى است كه آمارها نشان مى دهد كه به ازاى هر هفت نفر در جهان. يكى نفر گرسنه است !اخبرى كه هدر رفتن منابع اقتصادى را آشكار مى سازد.

ا-شامل همةُ منابعى است كه در تههةَ غذا از آغاز تا سر سفره سهم داشته اند .مديريت منابع. نيروى انسانى براى توليد و تأمين مواد اوليه و انر (ی. فر اورى. ابزار و دستگاه هاى مورد نياز. بسته بندى. حمل و نقل. آب و انر (أى مصرفى. زمين هاى باير و... از جمله اين هنابع هستند.
 سوختن سوخت ها در خودروها. كارخانه هاو...است.

يوشاك نيازى بايان نايذير

V انسان در طول تاريخ يوسته از يوشاك براى يوشاندن بدن خود استفاده كرده است.

 آداب و ر رسوم آن قوم است.

.

 توليدو مصرف شده است.

نمودار توليد انواع الياف در جهان

روند تولِد اليافـ بشـى

نمودار ميزان نسبى الياف در جهان

همان طورى كه در نمودار مشخص است ميزان نسبانى الياف ساختكى از الياف طبيعى بيش تر است.

الياف چیيست؟ْه رشته هاى ناز ک وبلندى كه مو مانندو با استحكام و انعطاف پذيرى مناسب است. كه از كنار هم قرار كرفتن اين رشته ها . الياف به دست مى آيند.

\qquad ت

تر كيب هاى مولكولى - تر كيب هايى كه ذره هاى سازنده ان ها مولكول ها هستند. تركيب هاى مولكولى بر دو دسته تقسيم مى شوند

V مولكول مى گويند. اين درشت مولكول ها مى توانند طبيعى مانند سلولز . نشاسته . يروتئين ها . پشم . ابر يشم و......و يا ساختگى مانند بلى اتن . نايلون . تفلون و........ باشند.

الياف و در شت مولكول ها

الف - درشت مولكول هاى طبيعى

V نيمى از لباس هاى توليدى در جهان از پنبه است.علاوه بر آن در توليد رومبلى . برده . تور ماهيگيرى . كاز استريل و......... استفاده مى شود.

پص 『نبه از مولكول هاى سلولز تشكيل شده و هر مولكول سلولز زنجيرى بسيار بلند است كه از اتصال شمار بسيار زيادى مولكول كلوكز به يكديگُر ساخته شده اند.

نكتها سلولز از اتصال حدود مولكول گلوكز به يكديگر تشكيل مى شود ولى هر مولكول سلولز باز هم آن قدر كوپک است كه ديده نمى شُود. نكته Y تعداد اتم هاى سازنده هر مولكول سلولز . بسيار زياد بوده و اندازه مولكول آن بزر گى است.

ب- درشت مولكول هاى ساختكى(الياف يا پليمر هاى ساختكى)

الياف ساختكى
V اليافى هستند كه در طبيعت يافت نمى شوند.و از واكنش بين مواد شيميايى توليد مى شوند.
V مانند هلى استر . نايلون . بشور بيوش و به كار مى رود.
 مصرف . ظروف پاستيكى . فرش . رومبلى . برده و ...استفاده مى شود.

مونومر(تكپار) - به هر يک از مولكول هاى كوچک سازنده پِيمر (بسپار) . مونومر مى گويند. پֶليمر (بسپار) - درشت مولكول هايىى كه از اتصال تعداد زيادى مولكول هاى كوچکى تر(مونومر) درست شده اند. پليمر شدن(بسپارش) - به واكنشى كه در آن مولكول هاى كوچک در شر ایط مناسب به يكدیگ, متصل شده و مولكول هاییى با زنجير بلند و جرم مولى زياد ايجاد مى شود.
 پֶليمر ها بر دو دسته اند

الف - طبيعى مانند پشم . سلولز .نشاسته . بروتثئين ها و.... بـ ساختگى مانند بلى اتن . نايلون . تفلون . بـى وى سى .

انواع واكنش پليمر شدن ميان تركيب هاى آلى

الف - لِليمر هاییى كه از واكنش مونومرهای داراى پیوند دو گانةّ كربن - كربن در زنجير كربنى به دست مى آيند.كه با شكستن يكى از پيوند دو گانه در هر تر كيب و اتصال مونومر ها به هم . لپلير تشكيل مى شود.

بِ- پِليمرهایی كه در ساختار آنها افزون بر اتم هاى كربن و هيدرورْن . اتم هاى ديگرى مانند اكسيرّن. نیترورن و ...وجود دارند . ودرواقع مونومر هاى آنها از طر يق گروه عاملى به هم متصل شده و پپليمر را تشكيل مى دهند. نكته - از آنجا كه تر كيب هاى سير نشده حاوى ييوند دو كانه كربن -كربن در زنجير كربنى در صنايع پتروشيمى با تأمين شر ايط مناسب واكنش داده و پليمرهاى گوناگونى توليد كنند .از اهميت ويزَه ای برخور دارند.

توضيح واكنش پֶليمر شدن

در این واكنش ها .شمار زيادى از مونومر ها با يكديگر واكنش مى دهند و پليمر را مى سازند .مطابق شكل زير مونومرهاى اتن به يكديعر افزوده مى شوند و پلى اتن را پديد مى آورند .با دقت در ساختار پلى اتن در مى يابيد كه این تر كيب از تكرار مجموعه ای از اتم هاى كربن و هيدرورنن به نام واحد تكر ارشونده یديد آمده است .توجه كنيد كه تعيين تعداد دقيق موني واكنش پليمرى شدن ممكن نيست و تاكنون هيج قاعده ای بر ای اتصال شُمار مونومر ها به يكديگر ارائه نشُده است .به همين دليل براى
 راجلوى آن مى نويسند

بديهى است كه بر اساس الكوى بال با تغيير مونومر. پليمرى جديد با ساختار و خواص متفاوت مى توان تهيه كرد.

نكته - در واكنش هاى پِليمر شدن. n در جه بِليمر شدن به عبارتى تعداد واحد هاى تكر ا شونده در ساختار پپليمر را نشان مى دهد.
 اتيلن است.

 ات اتن ماده كازى شكل ولى بلى اتن جامد سفيد رنگّ مى باشد.

$520-520-500-320 x^{2} x^{2} 4$ نكته - بلى اتن مذاب را در دستگاهى با عمل دميدن هوا به ورقةّ نازكى پلاستيكى تبديل مى كند.

11

$$
\begin{aligned}
& \text { سيانو اتن } \\
& \text { بلى سيانو اتن (آكريليكى) } \\
& \text { 1.Y }
\end{aligned}
$$

『 از آن در تهيه يتو و فرش آكر يليك استفاده مى شود.
「－

1

『 \downarrow
．
فاضلاب ها ，ناودان ها و در درگير ها ما مى بينيم．
『ا از قراردادن آن بين دوصفحه شيشه ای مانع از خرد شدن آن در اثر ضر بـه می شود．

F－

■
『 هـهمتر ين مصارف آن شامل ساخت قطعات داخل خودرو（جعبه هاى باترى ．روكش صندلى و．．．．）．سرنگ هاى بزشكى． محصولت مصر فى بلاستيكى و بسته بندى است．

『ا از آن در ساختن ظروف نجسب ．نخ دندان و نوار آب بندى در لوله كشى（نوار تنلون）و．．．．．．．．استقاده مى شود．

『 هونومر آن وينيل بنز
『 از آن براى تهيه ظروف يكبار مصرف ．لوازم استحمام وسايل باغبانى استفاده مى شود．
$\left[\begin{array}{cc}\mathrm{H} & \mathrm{H} \\ 1 & 1\end{array}\right]$

حالا نوبت شماست

سؤالا - تر كيب حاصل از واكنش كلريد وينيل با هيدرورثن . كلرو اتن نام دارد؟

سؤال

سؤال

سؤال F نادرست را بنويسيد.)

الف - يى مول آن به طور كامل با يكى مول هيدرورن . به تر كيب سير شده تبديل مى شود.

ج-تعداد اتم هاى كربن استايرن.

د- نسبت تعداد اتم هاى كربن به تعداد اتم هاى هيدرورن آن ، تقريباً ه/ ا است.

ه-در پليمر آن. به تعداد n \& بيوند دو كانه وجود دارد.

سؤال -ا -ا توجه به توضيح داده شده . إسخ درست هر عبارت را انتخاب نمائيد. الف -مونومر پلى ثروین‘'

ب－تعداد اتم هاى هيدرورّن مونومر ．．．．．．．．．．．．．．．．دو برابر تعداد اتم هاى كربن آن مى باشد．（يلى اتن－پِلى پروپن－پلى استايرن） ج ج－．．．．．．．．．．．．．．．．．．．．

پِلى اتن را بيش تر بشناسيم．
يافته هاى تجر بى نشان داد كه اتن در شر ايط گوناگون．با انجام واكنش پِليمرى شدن فراورده هايىى با ساختار متفاوت یديد مى آورد ． مولكول هاى اتن در شر ايط معين پشت سر هم به يكديگ，متصل شده و زنجير هاى بلند و بدون شاخه ايجاد مى شود ．اما در شر ايطى دي乏ر برخى اين مولكول هااز كناره ها به يكديگر افزوده شده و زنجير هاى شاخه دار توليد مى شود．

بلى اتت بلون

لـى اتَ شا خَهدا
『 اين ماده شفاف وانعطاف يذيرى كمى نيزّ دارد．『 مولكول هاى اتن از كناره ها نيز به يكديغر اضافه شده و زنجيرهاى شاخه دار توليد مى كنند．『 \downarrow

V به دليل خطى بودن（بدون شاخه فرعى）．متر اكم بوده چچگالى بيش تر دارد．كه به آن ثلى اتن سنگین مى گويند．

V الكولكول هاى اتن پشت سرهم به يكديگر متصل شده و زنجير هاى بلند و بدون شاخه ايجاد مى كنند.『 درتهيه لوله هاى پاستيكى . دبه هاى آب . بطرى پلاستيكى شيرو.... به كار مى رود.

تذكر -انواع پاستيل ها از پليمرى به نام پلى وينيل استات تمیه مى شوند.

كروه عاملى - گروه عاملى . آرايش مشخصى از اتم هاست كه به مولكول آلى داراى آن. خواص فيز يكى و شيميايى منحصر به فردى
مى بخشد.

كرو هاى عاملى در يك نكاه

آميد ها	آمين	استر	كربو كسيليك \|اسـد	الكل	اتر	كتون	آلـدنِّ	تركبـ
O		O	O			O	O	فر مول
C N	N	C O	C OH	O H	O	C C C	C H	095

 عامل استرى . اگر به NH متصل باشد عامل آميدى و اگر تنها باشد عامل كتونى است.

تر كيب هاى آلى . تر كيب هايى كه در ساختار خود افزون بر اتم هاى هيدرورْن و كربن. اتم هاى اكسيرْن. كاهى نيترورُن و كو گرد نيز دارند.

V آلى موجود در آنهاست.

گ كتونى است.

آلدهدها

${ }^{H} \mathrm{C}$
V تر كيب هاى آلى كه گروه عاملى V اين تر كيب ها مى تواند زنجيرى يا حلقوى باشند.

『 فرمول مولكول آن C
 r V هـ هيتانون يک كتون زنجيرى است كه V كربن دارد.و در ساختار ميخك يافت مى شود.

اليزومر (هماًار) -تر كيب هایی كه فرمول مولكولى يكسان وفرمول ساختارى متفاوت دارند.

O
${ }^{C} \mathrm{CH}_{3}$
CH_{3}
CH_{3} مثال - دو تر كيب زير فرمول مولكولى CrH\&O دارند اما فرمول ساختارى متغاوت زير را دارند. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}$

حالانوبت شماست

سؤال ا-در ميان تر كيب هاى داده شده زير تر كيب هاى ايزومر را مشخص كنيد.
(II)
${ }^{\text {C }}$ (II
$\mathrm{CH}_{+} \mathrm{CH}, \mathrm{CH}_{+} \mathrm{OH}$ \square 0

HCC C
$\mathrm{CH}_{r} \mathrm{CH} \quad \mathrm{CH}_{r}$ OH

سؤال Y ا فَرمول مولكولى هيتان . كدام است و با كدام تر كيب ايزومر است و در مولكول آن چند جفت الكتر ون پيوندى شر كت دارد؟

rrg وr
rl و

Y! و و ()

سؤال

سؤال F البا توجه به فر مول ساختارى داده شده . باسخ دهيد.
ب- فر مول مولكولى اين تر كيب را بنويسيد.

لا مولكول آن ها از دو بخش هيدروكربن (بخش ناقطبى) و كروه هيدروكسيل(بخش قطبى) تشكيل شده است . بنا بر اين در آنها

 آب به خوبى حل مى شوند.
『 اصاده ترين آن ها متانول واتانول مى باشند.

目 از از منتول در تهيه برخى آدامس ها. آب نبات ها و داروها استفاده مى شود. ها ح

تذكر - بوى خاص موجود در كشنيز و رازيانه به دليل وجود گروه عاملى در آنهاست به طورى كه در ساختار كشنيز كروه عاملى هيدرو كسيل (OH-)و در ساختار رازيانه كروه عاملى اترى (-O--) وجود دارد.

『ا داراى يی يا چند كروه عاملى كربو كسل（－C－OH－
．\downarrow مولكول هاى اسيد در آن هاست．

『ا فورميك اسيد（متانوئيك اسيد）ساده ترين و اتانوئيك اسيد（استيك اسيد）نام آشنا ترين و يكى از پر كاربرد ترين اسيد（سر كه） در زندگى روزانه ماست．

『 فورميكَ اسيد حون اولين بار از تقطير مورچهَ سرخ به دست آمد．نام فورميكَ اسيد يا جوهر مورحه بر آن نهادند． در زبان لاتين به مور چهه فورميكا مى گويند．

＂

司 تارتاريك اسيد در انَّور و اكزاليك اسيد درريواس يافت مى شوند．

 كونه ایى كه اسيد هاى سبك تا ها كر بن در آب محلول انـ اند．

تذكر ـكروه كربوكسيل از كنار هم قرا，گُرفتن يى كروه كربونيل با يك كروه هيدروكسيل تشكيل شده است．

『 تر كيب آلى كه در ساختار آن اتم هاى H．C و H وجود دارد．در واقع اگر در فرمول آمونياك به جاى هيدرورْن هاى آن （R）قرار گیرد ．جسم حاصل آمين ناميده مى شود．『ا ساده ترين آمين ．هتيل آمين است．كه فرمول ساختارى آن به صورت زير است．

$03-\mathrm{H}$

Ø صجود اتم نيترورن در ساختار آن ها سبب شده تا خواص شيميايى و فيز يكى خاصى داشته باشند．مثلاً بوى بد ماهى به دليل داشتن متيل آمين و برخى آمين هاى ديكر است．

『 داراى گروه عاملى（ V از پِليمر شدن آنها تر كيبى به نام پلى آميد درست مى شود．كه كولا يكى از معروف ترين آنها است． V آميدها．از واكنش اسيد هاى آلى با آمين ها به دست مى آيند．

استر ها

الص استرها دسته ای از مواد آلى هستند كه منشأ بوى خوش شكوفه ها．كل ها（مانند ياسمن）．عطرها و نيز بو و طعم ميوه ها هستند ．براى نمونه．بو و طعم خوش آناناس به دليل وجود اتيل بوتانوات در آن است．

لا اگر به جاى اتم هيدرورن كروه كربوكسيل يى كروه آلكيل قرار گيرد．تر كيب حاصل را استر مى نامند． كروه عاملى آن ها（（OR ，））است．

ه در واكنش استرى شدن آب ．از تر كيب OH اسيد با لا الكل به دست مى آيد．

『 جهت افزايشُ سرعت واكنش استرى شدن از كاتاليز گر اسيدى مناسب مانند سولفوريك اسيد ．استفاده مى كنند． واكنش تعادلى است، يعنى درجهت رفت وبر گشت با سرعت يكسان انجام مى شود．

مثال｜－－واكنش ميان استيك اسيد（اتانوئيك اسيد）و اتانول ．كه اتيل استات و آب توليد مى كند．

مثال Y－واكنش بوتانوئيى اسيد با اتانول ．كه اتيل بوتانوات و آب تشكيل مى شود．

كاربر د－در صنعت از اتيل بوتانوات جهت توليد شوينده هاى با بوى آناناس استفاده مى كنند．

روغن و چربى

『 هر دو استر طبيعى مى باشند．
『 از جمله تر كيب هاى آلى هستند كه به دليل تغاوت در ساختار ．رفتارهاى فيز يكى و شيميایى هتفاوتى دارند．به عنوان نمونه：

.در ساختارمولكول هاى روغن. بيوندهاى دوگانه بيشترى وجود داشته و واكنش پذيرى بيشترى نيز دارد.(اختلاف
شَيميايى)

واكنش هاى پليمر شدن دسته ب
ياد آورى - پپيمر هايى كه در ساختار آنها افزون بر اتم هاى كربن و هيدروزن . اتم هاى ديگرى مانند اكسيرَن. نيتروزن و ...وجود دارند .ودرواقع مونومر هاى آنها از طريق گروه عاملى به هم متصل شده و پليمر را تشكيل مى دهند.

پلى استر ها

از واكنش يک كربو كسيليكى اسيد دو عاملى با يى الكل دو عاملى در شر ايط مناسب .طى مر احل زير پلى استر توليد مى شود. مر حله I-در اين مرحله يكى از گروه هاى هيدروكسيل در الكل با يكى از گرو ههاى كربو كسيل در اسيد تر كيب شده و با از دست دادن آب . گروه عاملى استرى را ايجاد مى كند.

مر حله|| - وجود يک گروه هيدرو كسيل و يک گروه كربو كسيل در ساختار فر اورده . واكنش استرى شدن مى تواند ادامه پيدا كند. به طورى كه از يك سو با عامل اسيدى و از سوى ديگر با عامل الكلى واكنش مى دهد.

مر حله||||-ا ادامه اين روند مولكول هاى بيش ترى واكنش داده و در نهايت مولكول هايى با زنجير بلند كه شامل شمار زيادى عامل استرى است. تشكيل مى شود كه پلى استر نام دارد. الكَى زيرفرمول كلى پلى استر توليد شده را نشان مى دهد.

پلى آميد ها

 شاخ حيوانات و پشم گوسفند از این نمونه هستند.

حاصل مى شود كه به آن يلى آميد مى گويند.
o
" از لِيمر شدن آميد ها تر كيبى كه دارای شمار زيادى گروه عاملى

مر حله I-تهيه پلى آميدها مانند تهيه پلى استرهاست . با اين تفاوت كه به جاى الكل .كروه عاملى آمينى با گروه عامل اسيدى واكنش مى دهد.
$\mathrm{HOOC} \square \mathrm{COOH} \mathrm{H} \cdot \mathrm{N} \square-\mathrm{NH} \xrightarrow{\square} \square \mathrm{HOOC}-\square-\mathrm{CH}+12 \mathrm{C}$
مر حله II-با ادامه واكنش.ييوندهاى آميدى بيش ترى تشكيل شده و در نهايت ملى آميد توليد مى شود.

$\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

『
『 هنج برابر از فولاد هم جرم خود مقاوم تر است.

『 \downarrow
 جان ميليون ها انسان را در حوادث گوناگون نجات داده است.

پֶليمر ها، ماندكار يا تخر یب پذير

آبكافت استر ها

استر ها در شر ايط مناسب با آب واكنش مى دهند و به الكل و اسيد آلى سازنده تبديل مى شوند.اين واكنش به آبكافت استر ها معروف است.به عنوان نمونه از آبكافت اتيل بوتانواتدر حضور سولنور يک اسيد .به اتانول و بوتانوئيك اسيد تبديل مى شوند.

سؤال - به نظر شما حرا هر نوع ثوشاک تاريخ مصر فی داردو بعد از مدتى ثوسيده مى شود؟ زير ا مولكول هاى پليمر سازندة آنها با مولكول هاى موجود در محيط پير امون واكنش مى دهند و برخى از پيوندهاى موجود در ساختار

تذكر -آهنگ تجزيه پلى استرها و پلى آميدها بسيار كند است و به عواملى مانند جنس لباس . زمان استفاده از آن و مونومرهاى سازنده آن ها بستگى دارد.

مواد زيست تخخريب پֻیِ موادى كه در محيط زيست به كمك باكترى ها به مواد ساده ترى تجزيه مى شوند .

مزايا
پِليمر هاى سير شده ای كه ساختارى شبيه به آلكان ها دارند. هيدروكربن هاى سير نشده مونومر هاى سازنده آنها مى باشند .اين
 تجز يه نمى شوند و بر ای ساليان طولانى دست نخور دهد باقى مى مانند ايراد
 مطلوبى نيست زيرا ماند كارى دراز مدت اين مواد در طبيعت سبب ايجاد مشكلات فراوانى مانند تبديل محيط زيست به كورستان
 يك جامعه را خيلى باللا مى برد.
راه چارْ

ا- بازيافت اين مواد يكى از راهكار هاى عملى است كه به حفظ و بهره بردارى بهينه از منابع منجر خواهد شد.
 همه جهانيان قرار كرفته است.

تو جه - به منظور آسان سازى و افزايش كارايى بازيافت و افزايش كيفيت فراورده هاى حاصل از بازيافت. براى هر پليمر نشانه ای در نظر گرفته اند كه بر روى كالها حى مى شود .اين نشانه شامل عددى است كه درون يک مثلث قرار دارد .از اين رو انتظار مى رود كه اين نشانه روى كالاهاى اير انى نيز حى شـى شود تا فر ايند بازيافت آنما آسان تر شود.

نام پليمر	بِلى اتِلن ترفتا	بلى اتن سنكين	بلى وينيل كلريد	بلى اتن سبك	بلى بروبن	بلى استيرن
نشانه پֶليمر	$\stackrel{1}{1}$	$4 \mathrm{CDP}$		$\frac{A}{+}$	$\underset{\mathrm{Pp}}{\langle 0}$	$\stackrel{<}{4 S}$

پِليمر هاى دو ستدار محيط سبز (پֶليمر سبز)

لص پِليمر هاى كه توسط جانداران ذره بينى تجزيه شده و به مولكول هاى ساده مانند آب و كربن دى اكسيد تبديل مى شوندرا پیليمر هاى دوستدار محيط زيست يا لِليمر هاى سبز مى نامند.
 موجود در اين مواد را به لاكتيك اسيد تبديل كرده. سپس از واكنش پليمرى شدن آن در شر ايط مناسب پلى لاكتيك اسيد توليد مى كنند.
... توليد شده و كاربر آنها رو به گسترش است .اين پلاستيك ها امكان تبديل شدن به كود را دارند به همين دليل ردیای كوچک ترى در محيط زيست برجاى مى گذارند.

چ V سازنده خود تجز يه مى شود.و مزه شير ين ايجاد مى كند.『 گوارش نشاسته. شامل واكنش هاى شيميايى تجزيه آن است كه از دهان آغاز مى شود و به كمك آنزيم ها تسريع مى يابد.

تذكر ا - شير ترش شده داراى للتتيك اسيد است. تذكر Y-از پليمرهاى زيست تخر یب پذير براى بخيه زدن استفاده مى شود. تذكر الف - اين تر كيب جزء كدام دسته از تر كيب هاى آلى مى باشد.

ب- آيا فرمول مولكولى آن مى تواند C.H.O باشد.

